Cyclic Linear Hidden Markov Models for Shape Classification

  • Vicente Palazón
  • Andrés Marzal
  • Juan Miguel Vilar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)

Abstract

In classification tasks, shape descriptions, combined with matching techniques, must be robust to noise and invariant to transformations. Most of these distortions are relatively easy to handle, particularly if we represent contours by sequences. However, starting point invariance seems to be difficult to achieve. The concept of cyclic sequence, a sequence that has no initial/final point, can be of great help. We propose a new methodology to use HMMs to classify contours represented by cyclic sequences. Experimental results show that our proposal significantly outperforms other methods in the literature.

Keywords

Cyclic Sequences Hidden Markov Models Shape Classification 

References

  1. 1.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)MATHCrossRefGoogle Scholar
  2. 2.
    Marzal, A., Palazón, V.: Dynamic time warping of cyclic strings for shape matching. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 644–652. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Techn 14(5), 742–753 (2004)CrossRefGoogle Scholar
  4. 4.
    Milios, E.E., Petrakis, E.G.M.: Shape retrieval based on dynamic programming. IEEE Transactions on Image Processing 9(1), 141–147 (2000)CrossRefGoogle Scholar
  5. 5.
    Arica, N., Yarman-Vural, F.: A shape descriptor based on circular hidden markov model. In: International Conference on Pattern Recognition, vol. I, pp. 924–927 (2000)Google Scholar
  6. 6.
    Bicego, M., Murino, V.: Investigating hidden markov models’ capabilities in 2D shape classification. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 281–286 (2004)CrossRefGoogle Scholar
  7. 7.
    Cai, J., Liu, Z.Q.: Hidden markov models with spectral features for 2D shape recognition. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1454–1458 (2001)CrossRefGoogle Scholar
  8. 8.
    He, Y., Kundu, A.: 2-D shape classification using hidden markov model. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(11), 1172–1184 (1991)CrossRefGoogle Scholar
  9. 9.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2) (1989)Google Scholar
  10. 10.
    Young, S., Odell, J., Ollason, D., Valtchev, V., Woodland, P.: The HTK Book. Cambridge University 1996 (1995)Google Scholar
  11. 11.
    Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann. Math. Stat. 41, 164–171 (1970)MathSciNetMATHGoogle Scholar
  12. 12.
    Juang, B.H., Rabiner, L.R.: The segmental K-means algorithm for estimating parameters of hidden markov models. IEEE Transactions on Acoustics, Speech, and Signal Processing 38(9), 1639 (1990)MATHCrossRefGoogle Scholar
  13. 13.
    Forney, G.D.: The Viterbi algorithm. Proceedings of the IEEE 61, 268–278 (1973)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Maes, M.: On a cyclic string-to-string correction problem. Information Processing Letters 35, 73–78 (1990)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zangwill, W.I.: Nonlinear Programming. A Unified Approach. Prentice-Hall, Englewood Cliffs (1969)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vicente Palazón
    • 1
  • Andrés Marzal
    • 1
  • Juan Miguel Vilar
    • 1
  1. 1.Dept. Llenguatges i Sistemes Informàtics. Universitat Jaume I de Castelló.Spain

Personalised recommendations