A Fast Mesh Deformation Method for Neuroanatomical Surface Inflated Representations

  • Andrea Rueda
  • Álvaro Perea
  • Daniel Rodríguez-Pérez
  • Eduardo Romero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)

Abstract

In this paper we present a new metric preserving deformation method which permits to generate smoothed representations of neuroanatomical structures. These surfaces are approximated by triangulated meshes which are evolved using an external velocity field, modified by a local curvature dependent contribution. This motion conserves local metric properties since the external force is modified by explicitely including an area preserving term into the motion equation. We show its applicability by computing inflated representations from real neuroanatomical data and obtaining smoothed surfaces whose local area distortion is less than a \(5 \: \%\), when comparing with the original ones.

Keywords

area-preserving deformation model deformable geometry surface inflating 

References

  1. 1.
    Filippi, M., Horsfield, M., Bressi, S., Martinelli, V., Baratti, C., Reganati, P., Campi, A., Miller, D., Comi, G.: Intra- and inter-observer agreement of brain mri lesion volume measurements in multiple sclerosis. a comparison of techniques. brain 6, 1593–1600 (1995)CrossRefGoogle Scholar
  2. 2.
    Tapp, P.D., Head, K., Head, E., Milgram, N.W., Muggenburg, B.A., Su, M.Y.: Application of an automated voxel-based morphometry technique to assess regional gray and white matter brain atrophy in a canine model of aging. NeuroImage 29, 234–244 (2006)CrossRefGoogle Scholar
  3. 3.
    Mangin, J., Riviere, D., Cachia, A., Duchesnay, E., Cointepas, Y., Papadopoulos-Orfanos, D., Collins, D., Evans, A., Regis, J.: Object-based morphometry of the cerebral cortex. IEEE Trans Med Imaging 23, 968–982 (2004)CrossRefGoogle Scholar
  4. 4.
    Filipek, P.A., Kennedy, D.N., Jr., V.S.C., Rossnick, S.L., Spraggins, T.A., Starewicz, P.M.: Magnetic resonance imaging-based brain morphometry: Development and application to normal subjects. Annals of Neurology 25, 61–67 (1989)CrossRefGoogle Scholar
  5. 5.
    Ashtari, M., Zito, J., Gold, B., Lieberman, J., Borenstein, M., Herman, P.: Computerized volume measurement of brain structure. Invest Radiol. 25, 798–805 (1990)CrossRefGoogle Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  7. 7.
    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: recovering 3D shape and nonrigid motion. Artificial Intelligence 36, 91–123 (1988)MATHCrossRefGoogle Scholar
  8. 8.
    Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing 19, 1023–1040 (2001)CrossRefGoogle Scholar
  9. 9.
    Carman, G.J., Drury, H.A., Essen, D.C.V.: Computational methods for reconstructing and unfolding the cerebral cortex. cerebral cortex 5, 506–517 (1995)CrossRefGoogle Scholar
  10. 10.
    Drury, H., Van Essen, D., Anderson, C., Lee, C., Coogan, T., Lewis, J.: Computarized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. Journal of Cognitive Neuroscience 1, 1–28 (1996)Google Scholar
  11. 11.
    Essen, D.C.V., Drury, H.A.: Structural and functional analyses of human cerebral cortex using a surface-based atlas. The Journal of Neuroscience 17, 7079–7102 (1997)Google Scholar
  12. 12.
    Essen, D.C.V., Drury, H.A., Joshi, S., Miller, M.I.: Functional and structural mapping of human cerebral cortex: Solutions are in the surfaces. Neuroimaging of Human Brain Function 95, 788–795 (1998)Google Scholar
  13. 13.
    Drury, H.A., Corbetta, M., Shulman, G., Essen, D.C.V.: Mapping fMRI activation data onto a cortical atlas using surface-based deformation. NeuroImage 7, S728 (1998)Google Scholar
  14. 14.
    Joshi, M., Cui, J., Doolittle, K., Joshi, S., Essen, D.V., Wang, L., Miller, M.I.: Brain segmentation and the generation of cortical surfaces. NeuroImage 9, 461–476 (1999)CrossRefGoogle Scholar
  15. 15.
    Essen, D.C.V., Drury, H.A., Dickson, J., Harwell, J., Hanlon, D., Anderson, C.H.: An integrated software suite for surface-based analyses of cerebral cortex. Journal of the American Medical Informatics Association 8, 443–459 (2001)Google Scholar
  16. 16.
    Harwell, J., Essen, D.V., Hanlon, D., Dickson, J.: Integrated software for surface-based analyses of cerebral cortex. NeuroImage 13, 148 (2001)CrossRefGoogle Scholar
  17. 17.
    Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8, 272–284 (1999)CrossRefGoogle Scholar
  18. 18.
    Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis I: Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999)CrossRefGoogle Scholar
  19. 19.
    Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999)CrossRefGoogle Scholar
  20. 20.
    Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging 20, 70–80 (2001)CrossRefGoogle Scholar
  21. 21.
    Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: On the Laplace-Beltrami operator and brain surface flattening. IEEE Transactions on Medical Imaging 18, 700–711 (1999)CrossRefGoogle Scholar
  22. 22.
    Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parameterization for texture mapping. IEEE Transactions on Visualization and Computer Graphics 6, 181–189 (2000)CrossRefGoogle Scholar
  23. 23.
    Gu, X., Yau, S.-T.: Computing conformal structure of surfaces. CoRR: Graphics  (2002)Google Scholar
  24. 24.
    Hurdal, M.K., Stephenson, K.: Cortical cartography using the discrete conformal approach of circle packings. NeuroImage 23, s119–s128 (2004)CrossRefGoogle Scholar
  25. 25.
    Ju, L., Stern, J., Rehm, K., Schaper, K., Hurdal, M., Rottenberg, D.: Cortical surface flattening using least square conformal mapping with minimal metric distortion. 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano 1, 77–80 (2004)Google Scholar
  26. 26.
    Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.T.: Intrinsic brain surface conformal mapping using a variational method. Proceedings of SPIE - The International Society for Optical Engineering 5370, 241–252 (2004)Google Scholar
  27. 27.
    Hermosillo, G., Faugueras, O., Gomes, J.: Cortex unfolding using level set methods. Technical report, INRIA: Institut National de Recherche en Informatique et en Automatique (1999)Google Scholar
  28. 28.
    Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normals. In: 13th IEEE Visualization 2002 (VIS 2002), IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  29. 29.
    DoCarmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)Google Scholar
  30. 30.
    Pons, J.-P., Keriven, R., Faugeras, O.: Area preserving cortex unfolding. In: Medical Image Computing and Computer-Assisted Intervention MICCAI, Proceedings, pp. 376–383 (2004)Google Scholar
  31. 31.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  32. 32.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrea Rueda
    • 1
  • Álvaro Perea
    • 2
  • Daniel Rodríguez-Pérez
    • 2
  • Eduardo Romero
    • 1
  1. 1.BioIngenium Research Group, Universidad Nacional de Colombia, Carrera 30  45-03, BogotáColombia
  2. 2.Department of Mathematical Physics and Fluids, Universidad Nacional de Educación a Distancia, c/ Senda del Rey, 9, 28040 MadridSpain

Personalised recommendations