Skip to main content

Structure, Chemistry and Synthesis of Carbonate Apatites — The Main Components of Dental and Bone Tissues

  • Conference paper
Minerals as Advanced Materials I

Abstract

Nonstoichiometric carbonate-doped or carbonate apatites are the main mineral components of human and animal hard tissues (bones and teeth). They are increasingly used as biocompatible materials for medical purposes. Besides, dispersed systems based on apatite-like compounds are characterized by highly developed surface (400 m2/g) and used as high effective ion-exchanger matrixes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonel G (1972) Contribution a l’etude de la carbonatation des apatites. 1. Synthese et etude des properietes physico-chimiques des apatites carbonatees de type A. Ann Chim 7:65–87

    Google Scholar 

  • Fleet ME, Liu X (2004) Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J Solid State Chem 177:3174–3182

    Article  Google Scholar 

  • Fleet ME, Liu X (2005) Local structure of channel ions in carbonate apatite synthesized at high pressure. Biomaterials 26:7548–7554

    Article  Google Scholar 

  • Fleet ME, Liu X, King PL (2004) Accomadation of the carbonate ion in apatite: An FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am Mineral 89:1422–1432

    Google Scholar 

  • Frank-Kamenetskaya OV, Golubtsov VV, Pikhur OL, Zorina ML, Plotkina YuV (2004) Nonstoichiometric apatite of the human dental hard tissues (the age alterations). Proc All-Rus Miner Soc 5:120–130 (in Russian)

    Google Scholar 

  • Frank-Kamenetskaya OV, Zorina ML, Kotl’yarova DA, Plotkina JuV, Polyarnaya ZhA, Garutt NV (2005) Apatites of skeletal reliquiae of mammals of different geological age. Mineralogical museums Saint Petersburg SPbGU 190–191 (in Russian)

    Google Scholar 

  • Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem 160:340–349

    Article  Google Scholar 

  • Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB (2004) Synthesis, crystal structure and thermal decomposition of potassium-doped carbonated hydroxylapatite. Z Kristallogr 219:479–486

    Article  Google Scholar 

  • Ivanova TI, Golubtsov VV, Frank-Kamenetskaya OV, Shmakov AN (2005) Crystal structure Refinement of human tooth enamel apatite of elder age group. Mineralogical museums Saint Petersburg SPbGU, p 246

    Google Scholar 

  • Kol’tsov AB, Frank-Kamenetskaya OV, Zorina ML, Kaminskaya TN, Vernigora NYu (2000) Complicate isomorphism in synthetical carbonate apatites. Proc All-Rus Miner Soc 2:109–116 (in Russian)

    Google Scholar 

  • Kol’tsov AB, Poritskaya LG, Frank-Kamenetskaya OV, Kaminskaya TN, Zorina ML (2002) Methods of synthesis of biogenic apatite analogues and results of its study. Organic Mineralogy Saint-Petersburg 41–42 (in Russian)

    Google Scholar 

  • Kondratyeva IA, Filatov SK (1989) Thermal and chemical deformations of fluorhydroxyapatite crystals on X-ray diffraction of raw minerals. Proceeding of the XI-th All-Union Conference, Sverdlovsk, p145 (in Russian)

    Google Scholar 

  • LeGeros RZ, Trautz OR, Klein E, LeGeros JP (1969) Two types of carbonate substitution in the apatite structure. Experimentia 25(1):5–7

    Article  Google Scholar 

  • Leventouri Th, Chakoumakos BC, Moghaddam HY, Perdikatsis V (2000a) Powder neutron diffraction studies of a carbonate apatite. J Mater Res 15:511–517

    Article  Google Scholar 

  • Leventouri Th, Moghaddam HY, Papancarchou N, Bunaciu CE, Levinson RL, Martinez O (2000b) Atomic displacement parameters of carbonate apatites from neutron diffraction data. Mater Res Soc Symp Proc 599:79–84

    Google Scholar 

  • Mehmel M (1930) Uber die structur des apatites. Z Kriststallogr 75:323–331

    Google Scholar 

  • Michel V, Ildefonse P, Morin G (1995) Chemical and structural changes in Cervus elaphus tooth enamel during fossilization (Lazaret Cave): a combined IR and XRD Rietveld analysis. Appl Geochem 10:145–159

    Article  Google Scholar 

  • Nelson DGA, Featherstone JDB (1982) Preparation, analysis and characterization of carbonated apatites. Calcified Tissue Int 34:69–81

    Google Scholar 

  • Panova EG, Ivanova TI, Frank-Kamenetskaya OV, Bulach AG, Chukanov NV (2001) Apatite of bone detritus of testaceous fishes from devon formation of north-west Russian platform. Proc All-Rus Miner Soc 4:97–107 (in Russian)

    Google Scholar 

  • Perdok WG, Christoffersen J, Arends J (1987) The thermal lattice expansion of calcium hydroxyapatite. Cryst Growth 80:149–154

    Article  Google Scholar 

  • Sudarsanan K, Young RA (1969) Significant precision in crystal structural details: Holly Springs hydroxyapatite. Acta Crystallogr B 25:1534–1543

    Article  Google Scholar 

  • Trombe JC, Montel G (1978) Some features of the incorporation of oxygen in different oxidation states in the apatite lattice.1. On the existence of calcium and strontium oxyapatites. J Inorg Nucl Chem 40:15–21

    Article  Google Scholar 

  • Vignoles M, Bonel G, Holcomb DW, Yong RA (1988) Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions. Calcified Tissue Int 43:33–40

    Article  Google Scholar 

  • Wilson RM, Elliott JC, Dowker SEP (1999) Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral 84:1406–1414

    Google Scholar 

  • Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25:2205–2213

    Article  Google Scholar 

  • Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM (2005) Rietveld refinement and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 26:1317–1327

    Article  Google Scholar 

  • Wilson RM, Dowker SEP, Elliott JC (2006) Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials 27:4682–4692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frank-Kamenetskaya, O.V. (2008). Structure, Chemistry and Synthesis of Carbonate Apatites — The Main Components of Dental and Bone Tissues. In: Krivovichev, S.V. (eds) Minerals as Advanced Materials I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77123-4_30

Download citation

Publish with us

Policies and ethics