On the Performance of Congestion Games for Optimum Satisfiability Problems

  • Aristotelis Giannakos
  • Laurent Gourvès
  • Jérôme Monnot
  • Vangelis Th. Paschos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4858)


We introduce and study a congestion game having max sat as an underlying structure and show that its price of anarchy is 1/2. The main result is a redesign of the game leading to an improved price of anarchy of 2/3 from which we derive a non oblivious local search algorithm for max sat with locality gap 2/3. A similar congestion min sat game is also studied.


price of anarchy non oblivious local search approximation algorithm max sat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alimonti, P.: New Local Search Approximation Techniques for Maximum Generalized Satisfiability Problems. In: Bonuccelli, M.A., Crescenzi, P.P., Petreschi, R. (eds.) CIAC 1994. LNCS, vol. 778, pp. 40–53. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Battiti, R., Protasi, M.: Approximate Algorithms and Heuristics for MAX-SAT. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of combinatorial optimization, vol. 1, pp. 77–148. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The Price of Stability for Network Design with Fair Cost Allocation. In: Proc. of FOCS 2004, pp. 295–304 (2004)Google Scholar
  4. 4.
    Bil ò, V.: On Satisfiability Games and the Power of Congestion Games. In: Proc. of AAIM 2007. LNCS, vol. 4508, pp. 231–240 (2007)Google Scholar
  5. 5.
    Christodoulou, G., Koutsoupias, E.: On the Price of Anarchy and Stability of Correlated Equilibria of Linear Congestion Games. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: Proc. of STOC 2005, pp. 67–73 (2005)Google Scholar
  7. 7.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination Mechanisms. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 345–357. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proc. of SODA 2002, pp. 413–420 (2002)Google Scholar
  9. 9.
    Devanur, N.R., Garg, N., Khandekar, R., Pandit, V., Saberi, A., Vazirani, V.V.: Price of Anarchy, Locality Gap, and a Network Service Provider Game. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1046–1055. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proc. of STOC 2004, pp. 604–612 (2004)Google Scholar
  11. 11.
    Khanna, S., Motwani, R., Sudan, M., Vazirani, U.V.: On Syntactic versus Computational Views of Approximability. SIAM Journal on Computing 28(1), 164–191 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Koutsoupias, E., Papadimitriou, C.: Worst Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Monderer, D., Shapley, L.S.: Potential Games. Games and Economic Behavior 14, 124–143 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proc. of STOC 2001, pp. 749–753 (2001)Google Scholar
  15. 15.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? In: Proc. of FOCS 2000, pp. 93–102 (2000)Google Scholar
  16. 16.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2(1), 65–67 (1973)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Aristotelis Giannakos
    • 1
  • Laurent Gourvès
    • 1
  • Jérôme Monnot
    • 1
  • Vangelis Th. Paschos
    • 1
  1. 1.LAMSADE, CNRS UMR 7024, Université de Paris-Dauphine, ParisFrance

Personalised recommendations