Skip to main content

The Cost of Monotonicity in Distributed Graph Searching

  • Conference paper
Principles of Distributed Systems (OPODIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4878))

Included in the following conference series:

Abstract

Blin et al. (2006) proposed a distributed protocol that enables the smallest number of searchers to clear any unknown asynchronous graph in a decentralized manner. Unknown means that the searchers are provided no a priori information about the graph. However, the strategy that is actually performed lacks of an important property, namely the monotonicity. That is, the clear part of the graph may decrease at some steps of the execution of the protocol. Actually, the protocol of Blin et al. is executed in exponential time. Nisse and Soguet (2007) proved that, in order to ensure the smallest number of searchers to clear any n-node graph in a monotone way, it is necessary and sufficient to provide Θ(n logn) bits of information to the searchers by putting short labels on the nodes of the graph. This paper deals with the smallest number of searchers that are necessary and sufficient to monotoneously clear any graph in a decentralized manner, when the searchers have no a priori information about the graph.

The distributed graph searching problem considers a team of searchers that is aiming at clearing any connected contaminated graph. The clearing of the graph is required to be connected, i.e., the clear part of the graph must remain permanently connected, and monotone, i.e., the clear part of the graph only grows. The search number of a graph G is the smallest number of searchers necessary to clear G in a monotone connected way in centralized settings. We prove that any distributed protocol aiming at clearing any unknown n-node graph in a monotone connected way, in decentralized settings, has competitive ratio \(\Theta(\frac{n}{\log n})\). That is, we prove that, for any distributed protocol \(\cal P\), there exists a constant c such that for any sufficiently large n, there exists a n-node graph G such that \(\cal P\) requires at least searchers to clear G. Moreover, we propose a distributed protocol that allows searchers to clear any unknown asynchronous n-node graph G in a monotone connected way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 200–209. ACM Press, New York (2002)

    Google Scholar 

  2. Barrière, L., Fraigniaud, P., Santoro, N., Thilikos, D.: Connected and Internal Graph Searching. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 34–45. Springer, Heidelberg (2003)

    Google Scholar 

  3. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey) DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, 5, pp. 33–49 (1991)

    Google Scholar 

  4. Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algorithms 12, 239–245 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributing Chasing of Network Intruders. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 70–84. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Breisch, R.: An intuitive approach to speleotopology. Southwestern Cavers 5, 72–78 (1967)

    Google Scholar 

  7. Flocchini, P., Luccio, F.L., Song, L.: Decontamination of chordal rings and tori. In: Proc. of 8th Workshop on Advances in Parallel and Distributed Computational Models (APDCM) (2006)

    Google Scholar 

  8. Flocchini, P., Luccio, F.L., Song, L.: Size Optimal Strategies for Capturing an Intruder in Mesh Networks. In: Proceedings of the 2005 International Conference on Communications in Computing (CIC), pp. 200–206 (2005)

    Google Scholar 

  9. Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for capturing an intruder. In: Proc. of 18th IEEE Int. Parallel and Distributed Processing Symp (IPDPS), IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  10. Fraigniaud, P., Nisse, N.: Connected Treewidth and Connected Graph Searching. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 470–490. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Fraigniaud, P., Nisse, N.: Monotony properties of connected visible graph searching. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 229–240. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Ilcinkas, D., Nisse, N., Soguet, D.: The cost of monotonicity in distributed graph searching. Technical Report, LRI-1475, University Paris-Sud, France (September 2007)

    Google Scholar 

  13. LaPaugh, A.: Recontamination does not help to search a graph. Journal of the ACM 40(2), 224–245 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Luccio, F.L.: Intruder capture in Sierpinski graphs. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 249–261. Springer, Heidelberg (2007)

    Google Scholar 

  15. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The complexity of searching a graph. Journal of the ACM 35(1), 18–44 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nisse, N., Soguet, D.: Graph searching with advice. In: Prencipe, G., Fales, S. (eds.) SIROCCO 2007. 14th Colloquium on Structural Information and Communication Complexity. LNCS, vol. 4474, pp. 51–67. Springer, Heidelberg (2007)

    Google Scholar 

  17. Parson, T.: Pursuit-evasion in a graph. In: Parson, T. (ed.) Theory and Applications of Graphs. Lecture Notes in Mathematics, pp. 426–441. Springer, Heidelberg (1976)

    Google Scholar 

  18. Yang, B., Dyer, D., Alspach, B.: Sweeping Graphs with Large Clique Number. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 908–920. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Tovar Philippas Tsigas Hacène Fouchal

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ilcinkas, D., Nisse, N., Soguet, D. (2007). The Cost of Monotonicity in Distributed Graph Searching. In: Tovar, E., Tsigas, P., Fouchal, H. (eds) Principles of Distributed Systems. OPODIS 2007. Lecture Notes in Computer Science, vol 4878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77096-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77096-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77095-4

  • Online ISBN: 978-3-540-77096-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics