Skip to main content

Handling of Contacts in Crowd Motion Simulations

  • Conference paper
Traffic and Granular Flow ’07

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.F. Henderson, On the fluid mechanics of human crowd motion, Transp. Res. 8, 509-515, 1974.

    Article  Google Scholar 

  2. D. Helbing, A fluid-dynamic model for the movement of pedestrians, Complex Systems 6, 391-415, 1992.

    MATH  MathSciNet  Google Scholar 

  3. S.P. Hoogendoorn, P.H.L. Bovy, Dynamic user-optimal assignment in continuous time and space, Transp. Res. B 38, 571-592, 2004.

    Article  Google Scholar 

  4. V. Blue, J.L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transp. Res. B 35, 293-312, 2001.

    Article  Google Scholar 

  5. A. Kirchner, A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrians dynamics, Physica A 312, 260-276, 2002.

    Article  MATH  Google Scholar 

  6. C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A 295, 507-525, 2001.

    Article  MATH  Google Scholar 

  7. G.G. Lovas, Modelling and simulation of pedestrian traffic flow, Transp. Res. B 28, 429-443, 1994.

    Article  Google Scholar 

  8. S.J. Yuhaski, J.M. Macgregor Smith, Modelling circulation systems in buildings using state dependent queueing models, Queueing Systems 4, 319-338, 1989.

    Article  MATH  Google Scholar 

  9. P.G. Gipps, B. Marksjö, A micro-simulation model for pedestrian flows, Math. Comp. Simul. 27, 95-105, 1985.

    Article  Google Scholar 

  10. D. Helbing, P. Molnár, Social force model for pedestrians dynamics, Phys. Rev. E 51, 4282-4286, 1995.

    Article  Google Scholar 

  11. J.J. Moreau, Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. 255, Série I, 238-240, 1962.

    MATH  MathSciNet  Google Scholar 

  12. H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de contractions dans les espaces de Hilbert, 1973.

    Google Scholar 

  13. J.F. Edmond, L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program. 104, no. 2-3, Ser. B, 347-373, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.F. Edmond, L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations 226, no.1, 135-179, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Colombo, M.D.P. Monteiro Marques, Sweeping by a continuous prox-regular set, J. Differential Equations 187, no. 1, 46-62, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  16. P.G. Ciarlet, Introduction à l’analyse numérique matricielle et l’optimisation, Masson, Paris, 1990.

    Google Scholar 

  17. D. Helbing, T. Vicsek, Optimal self-organization, New J. Phys. 1, 13.1-13.17, 1999.

    Article  Google Scholar 

  18. D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic, Nature 407, 487, 2000.

    Article  Google Scholar 

  19. D. Helbing, M. Isobe, T. Nagatani, K. Takimoto, Lattice gas simulation of experimentally studied evacuation dynamics, Phys. Rev. E 67, 067101, 2003.

    Article  Google Scholar 

  20. B. Maury, A time-stepping scheme for inelastic collisions, Numerische Mathematik 102, no. 4, 649-679, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Meyer-König, H. Klüpfel, and M. Schreckenberg, Assessment and analysis of evacuation processes on passenger ships by microscopic simulation, Pedestrian and Evacuation Dynamics (PED), Springer, Berlin, 2002.

    Google Scholar 

  22. J.J. Moreau, Evolution Problem associated with a moving convex set in a Hilbert space, J. Differential Equations 26, no. 3, 347-374, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Thibault, Sweeping Process with regular and nonregular sets, J. Differential Equations 193, no. 1, 1-26, 2003.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cécile Appert-Rolland François Chevoir Philippe Gondret Sylvain Lassarre Jean-Patrick Lebacque Michael Schreckenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maury, B., Venel, J. (2009). Handling of Contacts in Crowd Motion Simulations. In: Appert-Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, JP., Schreckenberg, M. (eds) Traffic and Granular Flow ’07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77074-9_15

Download citation

Publish with us

Policies and ethics