A New Dynamic Accumulator for Batch Updates

  • Peishun Wang
  • Huaxiong Wang
  • Josef Pieprzyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4861)


A dynamic accumulator is an algorithm, which gathers together a large set of elements into a constant-size value such that for a given element accumulated, there is a witness confirming that the element was indeed included into the value, with a property that accumulated elements can be dynamically added and deleted into/from the original set such that the cost of an addition or deletion operation is independent of the number of accumulated elements. Although the first accumulator was presented ten years ago, there is still no standard formal definition of accumulators. In this paper, we generalize formal definitions for accumulators, formulate a security game for dynamic accumulators so-called Chosen Element Attack (CEA), and propose a new dynamic accumulator for batch updates based on the Paillier cryptosystem. Our construction makes a batch of update operations at unit cost. We prove its security under the extended strong RSA (es-RSA) assumption.


Dynamic accumulator Paillier cryptosystem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact E-Cash from Bounded Accumulator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Benaloh, J., Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.: Paillier’s Cryptosystem Revisited. In: ACM CCS 2001, pp. 206–214 (2001)Google Scholar
  6. 6.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Fazio, N., Nicolosi, A.: Cryptographic Accumulators: Definitions, Constructions and Applications. Available (2003), at
  8. 8.
    Gentry, C., Ramzan, Z.: RSA Accumulator Based Broadcast Encryption. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 73–86. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Goodrich, M., Tamassia, R., Hasić, J.: An efficient dynamic and distributed cryptographic accumulator. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 372–388. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Nyberg, K.: Fast accumulated hashing. In: Gollmann, D. (ed.) 3rd Fast Software Encryption Workshop. LNCS, vol. 1039, pp. 83–87. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Paillier, P.: Public-Key Cryptosystems based on Composite Degree Residue Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Pohlig, S., Hellman, M.: An Improved Algorithm for Computing Logarithms in GF(p) and its Cryptographic Significance. IEEE Trans. Inform. Theory IT-24, 106–111 (1978)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sander, T.: Efficient accumulators without trapdoor. In: Varadharajan, V., Mu, Y. (eds.) Information and Communication Security. LNCS, vol. 1726, pp. 252–262. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  15. 15.
    Tsudik, G., Xu, S.: Accumulating Composites and Improved Group Signing. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Zhang, F., Che, X.: Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 2005, Cryptology ePrint Archive, Report 2005/103Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Peishun Wang
    • 1
  • Huaxiong Wang
    • 1
    • 2
  • Josef Pieprzyk
    • 1
  1. 1.Centre for Advanced Computing – Algorithms and Cryptography, Department of Computing, Macquarie UniversityAustralia
  2. 2.Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingapore

Personalised recommendations