Short Group Signature Without Random Oracles

  • Xiaohui Liang
  • Zhenfu Cao
  • Jun Shao
  • Huang Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4861)

Abstract

We construct a short group signature which is proven secure without random oracles. By making certain reasonable assumptions and applying the technique of non-interactive proof system, we prove that our scheme is full anonymity and full traceability. Compared with other related works, such as BW06 [9], BW07 [10], ours is more practical due to the short size of both public key and group signature.

Keywords

Group signature standard model short signature non-interactive proof system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. Cryptology ePrint Archieve, Report, /385 (2005) (2005), http://eprint.iacr.org/
  2. 2.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Blaze, M., Bleumer, G., Strauss, M. (eds.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Proceedings of ACM CCS 2004, pp. 168–177. ACM Press, New York (2004)Google Scholar
  8. 8.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group Signatures. In: PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proceedings of STOC 1998, pp. 209–218 (1998)Google Scholar
  12. 12.
    Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as applied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 40–57. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  14. 14.
    Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Groth, J.: Simulation-sound nizk proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Groth, J.: Fully Anonymous Group Signatures without Random Oracles. Cryptology ePrint Archieve, Report 2007/186 (2004), http://eprint.iacr.org/
  17. 17.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. Cryptology ePrint Archieve, Report, 2007/155 (2005), http://eprint.iacr.org/
  18. 18.
    Groth, J., Ostrovsky, R., Sahai, A.: New Techniques for Non-interactive Zero-Knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Kiayias, A., Yung, M.: Extracting group signatures from traitor tracing schemes. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 630–648. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Kiayias, A., Yung, M.: Group signatures: Provable security, efficient constructions and anonymity from trapdoor-holders. Cryptology ePrint Archieve, Report 2004/076, (2004), http://eprint.iacr.org/
  21. 21.
    Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xiaohui Liang
    • 1
  • Zhenfu Cao
    • 1
  • Jun Shao
    • 1
  • Huang Lin
    • 1
  1. 1.Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240, ShanghaiP.R. China

Personalised recommendations