An Adaptive Bayesian Technique for Tracking Multiple Objects

  • Pankaj Kumar
  • Michael J. Brooks
  • Anton van den Hengel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)


Robust tracking of objects in video is a key challenge in computer vision with applications in automated surveillance, video indexing, human-computer-interaction, gesture recognition, traffic monitoring, etc. Many algorithms have been developed for tracking an object in controlled environments. However, they are susceptible to failure when the challenge is to track multiple objects that undergo appearance change to due to factors such as variation in illumination and object pose. In this paper we present a tracker based on Bayesian estimation, which is relatively robust to object appearance change, and can track multiple targets simultaneously in real time. The object model for computing the likelihood function is incrementally updated and uses background-foreground segmentation information to ameliorate the problem of drift associated with object model update schemes. We demonstrate the efficacy of the proposed method by tracking objects in image sequences from the CAVIAR dataset.


  1. 1.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), 13 (2006)CrossRefGoogle Scholar
  2. 2.
    Dorin, C., Visvanathan, R., Peter, M.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)CrossRefGoogle Scholar
  3. 3.
    Ross, D., Lim, J., Yang, M.-H.: Adaptive probabilistic visual tracking with incremental subspace update. In: Proceedings of the Eighth European Conference on Computer Vision (ECCV 2004)Google Scholar
  4. 4.
    Nummiaro, K., Koller-Meier, E., Gool, L.J.V.: Object tracking with an adaptive color-based particle filter. In: Proceedings of the 24th DAGM Symposium on Pattern Recognition, pp. 353–360. Springer, London, UK (2002)Google Scholar
  5. 5.
    Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1631–1643 (2005)CrossRefGoogle Scholar
  6. 6.
    Han, B., Davis, L.: Object tracking by adaptive feature extraction. In: ICIP 2004. International Conference on Image Processing, vol. 3, pp. 1501–1504 (2004)Google Scholar
  7. 7.
    Han, B., Zhu, Y., Comaniciu, D., Davis, L.: Kernel-based bayesian filtering for object tracking. In: CVPR 2005. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 227–234, Washington, USA (2005)Google Scholar
  8. 8.
    Han, B., Davis, L.: On-line density-based appearance modeling for object tracking. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, pp. 1492–1499. IEEE Computer Society, Washington, DC, USA (2005)Google Scholar
  9. 9.
    Perez, P., Vermaak, J., Blake, A.: Data fusion for visual tracking with particles. Proceedings of the IEEE 92(3), 495–513 (2004)CrossRefGoogle Scholar
  10. 10.
    Papoulis, A.: Probablilty Random Variables and Stochastic Processes. In: S.W. (ed.), 3rd edn., McGraw-Hill Internationals, New York (1991)Google Scholar
  11. 11.
    Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing 50(2), 174–188 (2002)CrossRefGoogle Scholar
  12. 12.
    Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  13. 13.
    Kumar, P., Ranganath, S., Huang, W.: Queue based fast background modelling and fast hysteresis thresholding for better foreground segmentation. In: Proceedings of the Fourth International Conference on Information, Communications and Signal Processing (2003)Google Scholar
  14. 14.
    Rosenfeld, A., Pfaltz, J.: Distance functions in digital pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Jain, A.K.: Fundamentals of Digital Image Processing. In: Kailath, T. (ed.) Prentice Hall International, Englewood Cliffs (1989)Google Scholar
  16. 16.
    Kumar, P., Ranganath, S., Sengupta, K., Huang, W.: Cooperative multitarget tracking with efficient split and merge handling. IEEE Transactions on Circuts and Systems for Video Technology 16(12), 1477–1490 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pankaj Kumar
    • 1
  • Michael J. Brooks
    • 1
  • Anton van den Hengel
    • 1
  1. 1.University of Adelaide, School of Computer Science, South Australia 5000 

Personalised recommendations