Shot Boundary Detection Using Frame Transition Parameters and Edge Strength Scatter

  • P. P. Mohanta
  • S. K. Saha
  • B. Chanda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

We have presented a unified model for various types of video shot transitions. Based on that model, we adhere to frame estimation scheme using previous and next frames. The frame parameters accompanied by a scatter measure of edge strength and average intensity constitute the feature vector of a frame. Finally, the frames are classified as no change (within shot frame), abrupt change or gradual change frames using a multilayer perceptron network. The scheme is free from the problems of selecting thresholds and/or window size as used by various schemes. Moreover, the handling of both, abrupt and gradual transitions along with non-transition frames under a single and uniform framework is the unique feature of the work.

Keywords

shot detection abrupt transitions cut gradual transitions 

References

  1. 1.
    Cabedo, X.U., Bhattacharjee, S.K.: Shot detection tools in digital video. In: Proc. Non-linear Model Based Image Analysis, pp. 121–126. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Zhang, H.J.: Automatic partitioning of full-motion video. ACM/Springer Multimedia Systems 1(1), 10–28 (1993)CrossRefGoogle Scholar
  3. 3.
    Yeo, B., Liu, B.: Rapid scene analysis on compressed video. IEEE Trans. on Circuits and Systems for Video Technology 5(6), 533–544 (1995)CrossRefGoogle Scholar
  4. 4.
    Patel, N.V., Sethi, I.K.: Video shot detection and characterization for video databases. Pattern Recognition 30(4), 583–592 (1997)CrossRefGoogle Scholar
  5. 5.
    Huang, C.L., Liao, B.Y.: A robust scene-change detection method for video segmentation. IEEE Trans. on Circuits and Systems for Video Technology 11(12), 1281–1288 (2001)CrossRefGoogle Scholar
  6. 6.
    Zabih, R., Miller, J., Mai, K.: A feature based algorithm for detecting and classifying scene breaks. In: Proc. ACM Multimedia 1995, pp. 189–200 (1995)Google Scholar
  7. 7.
    Hanjalic, A.: Shot-boundary detection: Unraveled and resolved? IEEE Trans. on Circuits and Systems for Video Technology 12(2), 99–104 (2002)CrossRefGoogle Scholar
  8. 8.
    Cernekova, Z., Pitas, I., Nikou, C.: Information theory-based shot cut/fade detection and video summarization. IEEE Trans. on Circuits and Systems for Video Technology 16(1), 82–91 (2006)CrossRefGoogle Scholar
  9. 9.
    Hampapur, A., Jain, R., Weymouth, T.: Production model based digital video segmentation. Multimedia Tools and Applications 1, 1–38 (2002)Google Scholar
  10. 10.
    Zabih, R., Miller, J., Mai, K.: A feature based algorithm for detecting and classifying production effects. Multimedia Systems 7(2), 119–128 (1999)CrossRefGoogle Scholar
  11. 11.
    Lienhart, R.: Reliable dissolve detection. In: Proc. SPIE conf. on SRMD(4315), pp. 219 – 230 (1999)Google Scholar
  12. 12.
    Porter, S., Mirmehdi, M., Thomas, B.: Detection and classification of shot transitions. In: Proc. 12th British Machine Vision Conference, pp. 73–82. BMVA press (2001)Google Scholar
  13. 13.
    Yoo, H.W., Ryoo, H.J., Jang, D.S.: Gradual shot boundary detection using localized edge blocks. Multimedia Tools and Applications 28, 283–300 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • P. P. Mohanta
    • 1
  • S. K. Saha
    • 2
  • B. Chanda
    • 1
  1. 1.ECS Unit, Indian Statistical Institute, KolkataIndia
  2. 2.CSE Department, Jadavpur University, KolkataIndia

Personalised recommendations