Accurate Iris Boundary Detection in Iris-Based Biometric Authentication Process

  • Somnath Dey
  • Debasis Samanta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)


This paper presents an efficient technique for accurate detection of iris boundary, which is an important issue for any iris-based biometric identification system. Our proposed technique follows scaling, histogram equalization, edge detection and finally removal of unnecessary edges present in the eye image. Scaling and removing unnecessary edges enables us to reduce the search space for iris boundary. Experimental results show that with our approach it is possible to detect iris boundary as much as 98% of the eye images in CASIA database accurately and it needs only 25% time compared to the existing approaches.


Iris recognition biometric authentication image segmentation image processing 


  1. 1.
    Daugman, J.: How iris recognition works. IEEE Trans. on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  2. 2.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans.on PAMI 15(11), 1148–1161 (1993)Google Scholar
  3. 3.
    Wildes, R.P.: Iris Recognition: An Emerging Biometric Technology. Proc. of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  4. 4.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient Iris Recognition by Characterizing Key Local Variations. IEEE Trans. on Image Processing 13(6), 739–750 (2004)CrossRefGoogle Scholar
  5. 5.
    Canny, J.: A computational approach to edge detection. IEEE Trans. on PAMI 8(6), 679–698 (1986)Google Scholar
  6. 6.
    Hough, P.: Method and means for recognizing complex patterns. U.S. Patent 3,069,654 (December 1962)Google Scholar
  7. 7.
    Masek, L.: Recognition of human iris patterns for biometric identification (2003),
  8. 8.
    Huang, J., Wang, Y., Tan, T., Cui, J.: A New Iris Segmentation Method for Recognition. In: Proc. of the ICPR, vol. 3, pp. 554–557 (August 2004)Google Scholar
  9. 9.
    Ali, J.M.H., Hassanien, A.E.: An Iris Recognition System to Enhance E-security Environment Based on Wavelet Theory. Advanced Modeling and Optimization journal 5(2), 93–104 (2003)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Tisse, C.L., Martin, L., Torres, L., Robert, M.: Person identification technique using human iris recognition. In: Proc. of Vision Interface, Canada, pp. 294–299 (2002)Google Scholar
  11. 11.
    Vasta, M., Singh, R., Noore, A.: Reducing the False Rejection Rate of Iris Recognition Using Textural and Topological Fearures. Int. Jnl. of Signal Processing 2(1), 66–72 (2005)Google Scholar
  12. 12.
    Sung, H., Lim, J., Park, J., Lee, Y.: Iris Recognition Using Collarette Boundary Localization. In: Proc. of ICPR, vol. 4, pp. 857–860 (August 2004)Google Scholar
  13. 13.
    Mäenpää, T.: An Iterative Algorithm for Fast Iris Detection. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 127–134. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Liam, L., Chekima, A., Fan, L., Dargham, J.: Iris recognition using self-organizing neural network. In: IEEE, 2002 Student Conf. on Research and Developing Systems, Malasya, pp. 169–172 (2002)Google Scholar
  15. 15.
    Dey, S., Samanta, D.: An Efficient Approach of Pupil Detection in Iris Images. Techinal Report (January 2007)Google Scholar
  16. 16.
    Ritter, G.X., Wilson, J.N.: Handbook of Computer Vision Algorithms in Image Algebra. CRC Press (1996)Google Scholar
  17. 17.
    CASIA iris image database,
  18. 18.
    Proença, H., Alexandre, L.A.: UBIRIS: A noisy iris image database. In: ICIAP. vol. 1, pp. 970–977 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Somnath Dey
    • 1
  • Debasis Samanta
    • 1
  1. 1.School of Information Technology, Indian Institute of Technology, Kharagpur, -721302India

Personalised recommendations