Identification of Gene Regulatory Pathways: A Regularization Method

  • Mouli Das
  • Rajat K. De
  • Subhasis Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)


Network based pathways are emerging as an important paradigm for analysis of biological systems. In the present article, we introduce a new method for identifying a set of extreme regulatory pathways by using structural equations as a tool for modeling genetic networks. The method, first of all, generates data on reaction flows in a pathway. A set of constraints is formulated incorporating weighting coefficients. The effectiveness of the present method is demonstrated on two genetic networks existing in the literature. A comparative study with the existing extreme pathway analysis also forms a part of this investigation.


flux balance analysis gene regulatory networks apoptosis incidence matrix yeast cell cycle 


  1. 1.
    Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., Palsson, B.O.: Metabolic pathways in the post-genome era. Trends in Biochemical Sciences 28, 250–258 (2003)CrossRefGoogle Scholar
  2. 2.
    Gardner, T.S., Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003)CrossRefGoogle Scholar
  3. 3.
    Datta, S.: Exploring relationships: a partial least square approach. Gene Exp. 9, 257–264 (2001)Google Scholar
  4. 4.
    Urbanczik, R., Wagner, C.: An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics 21(7), 1203–1210 (2005)CrossRefGoogle Scholar
  5. 5.
    Schilling, C.H., Edwards, J.S., Letscher, D.: Combining pathway analysis with flux balance analysis fot the comprehensive study of metabolic systems. Biotechnology and Bioengineering 71(4), 286–306 (2000)CrossRefGoogle Scholar
  6. 6.
    Klamt, S., J., G., Kamp, A.V.: Algorithmic approaches for computing elementary modes in large biochemical reaction networks. IEEE Proc.- Syst. Biol. 152(4), 249–255 (2005)CrossRefGoogle Scholar
  7. 7.
    Klamt, S., Stelling, J.: Two approaches for metabolic pathway analysis? Trends in Biotechnology 212(2), 64–69 (2003)CrossRefGoogle Scholar
  8. 8.
    Xiong, M., Zhao, J., Xiong, H.: Network-based regulatory pathways analysis. Bioinformatics 20, 2056–2066 (2004)CrossRefGoogle Scholar
  9. 9.
    Schilling, C.H., Letscher, D., Palsson, B.O.: Theory for the systemic defnition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. theor. Biol. 203, 229–248 (2000)CrossRefGoogle Scholar
  10. 10.
    Kriete, A., Elis, R. (eds.): Computational systems Biology. Elsevier, San Diego, California, USA (2006)Google Scholar
  11. 11.
    Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRefGoogle Scholar
  12. 12.
    Xiong, M.M., Li, J., Fang, X.Z.: Identification of genetic networks. Genetics 166, 1037–1052 (2004)CrossRefGoogle Scholar
  13. 13.
    Shivapurkar, N., Reddy, J., Chaudhary, P.M., Gazdar, A.F.: Apoptosis and lung cancer: A review. J. Cell. Biochem. 88, 885–898 (2003)CrossRefGoogle Scholar
  14. 14.
    Covert, M.W., Schilling, C.H., Palsson, B.O.: Regulation of gene expression in flux balance models of metabolism. Journal of theoretical biology 223, 73–88 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mouli Das
    • 1
  • Rajat K. De
    • 1
  • Subhasis Mukhopadhyay
    • 2
  1. 1.Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700 108India
  2. 2.Bioinformatics Center, Department of Bio-Physics, Molecular Biology and Genetics, Calcutta University, Kolkata 700 009India

Personalised recommendations