Advertisement

Evolutionary Biclustering with Correlation for Gene Interaction Networks

  • Ranajit Das
  • Sushmita Mitra
  • Haider Banka
  • Subhasis Mukhopadhyay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

In this study, a novel rank correlation-based multiobjective evolutionary biclustering method is proposed to extract simple gene interaction networks from microarray data. Preprocessing helps to preserve those gene interaction pairs which are strongly correlated. Experimental results on time series gene expression data from Yeast are biologically validated based on standard databases and information from literature.

Keywords

Bioinformatics transcriptional regulatory network extraction gene expression profile gene interaction network 

References

  1. 1.
    Mitra, S., Pedrycz, W.: Special Issue on Bioinformatics. Pattern Recognition 39 (2006)Google Scholar
  2. 2.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of National Academy of Sciences USA 95, 14863–14868 (1998)CrossRefGoogle Scholar
  3. 3.
    Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)CrossRefGoogle Scholar
  4. 4.
    Gasch, A.P., Eisen, M.B.: Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3, research0059.1–0059.22 (2002)Google Scholar
  5. 5.
    Ji, L., Tan, K.L.: Identifying time-lagged gene clusters using gene expression data. Bioinformatics 21, 509–516 (2005)CrossRefGoogle Scholar
  6. 6.
    Madeira, S.C., Oliveira, A.L.: A Linear Time Biclustering Algorithm for Time Series Gene Expression Data. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 39–52. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Cheng, Y., Church, G.M.: Biclustering of gene expression data. In: Proceedings of ISMB 2000, pp. 93–103 (2000)Google Scholar
  8. 8.
    Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Molecular Systems Biology 3, 1–10 (2007)Google Scholar
  9. 9.
    Jong, H.D.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9, 67–103 (2002)CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Zha, H., Chu, C.H.: A time-series biclustering algorithm for revealing co-rregulated genes. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC 2005), pp. 1–6 (2005)Google Scholar
  11. 11.
    Madeira, S.C., Oliveira, A.L.: Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE Transactions on Computational Biology and Bioinformatics 1, 24–45 (2004)CrossRefGoogle Scholar
  12. 12.
    Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Balasubramaniyan, R., Hllermeier, E., Weskamp, N., Kamper, J.: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069–1077 (2005)CrossRefGoogle Scholar
  14. 14.
    Davies, G.R., Yoder, D.: Business Statistics. John Wiley & Sons, London (1937)Google Scholar
  15. 15.
    Cho, R.J., Campbell, M.J., Winzeler, L.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)CrossRefGoogle Scholar
  16. 16.
    Bo, T.H., Dysvik, B., Jonassen, I.: Lsimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Research 32, 1–8 (2004)CrossRefGoogle Scholar
  17. 17.
    Qian, J., Lin, J., Luscombe, N.M., Yu, H., Gerstein, M.: Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19, 1917–1926 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ranajit Das
    • 1
  • Sushmita Mitra
    • 1
  • Haider Banka
    • 2
  • Subhasis Mukhopadhyay
    • 3
  1. 1.Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700 108India
  2. 2.Center for Soft Computing Research, Indian Statistical Institute, Kolkata 700 108India
  3. 3.Bioinformatics Center, Department of Bio-Physics, Molecular Biology and Genetics, Calcutta University, Kolkata 700 009India

Personalised recommendations