Advertisement

Rough Set Theory of Pattern Classification in the Brain

  • Andrzej W. Przybyszewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

Humans effortlessly classify and recognize complex patterns even if their attributes are imprecise and often inconsistent. It is not clear how the brain processes uncertain visual information. We have recorded single cell responses to various visual stimuli in area V4 of the monkey’s visual cortex. Different visual patterns are described by their attributes (condition attributes) and placed, together with the decision attributes, in a decision table. Decision attributes are divided into several classes determined by the strength of the neural responses. Small cell responses are classified as class 0, medium to strong responses are classified as classes 1 to n-1 (min(n)=3 ), and the strongest cell responses are classified as class n. The higher the class of the decision attribute the more preferred is the stimulus. Therefore each cell divides stimuli into its own family of equivalent objects.

By comparing responses of different cells we have found related concept classes. However, many different cells show inconsistency between their decision rules, which may suggest that parallel different decision logics may be implemented in the brain.

Keywords

visual brain imprecise computation bottom-up top-down processes neuronal activity 

References

  1. 1.
    Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston, London, Dordrecht (1991)zbMATHGoogle Scholar
  2. 2.
    Zadeh, L.A.: Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning and Inference 105, 233 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Przybyszewski, A.W., Linsay, P.S., Gaudiano, P., Wilson, C.: Basic Difference Between Brain and Computer: Integration of Asynchronous Processes Implemented as Hardware Model of the Retina. 18, 70–85 (2007)Google Scholar
  4. 4.
    Pollen, D.A., Przybyszewski, A.W., Rubin, M.A., Foote, W.: Spatial receptive field organization of macaque V4 neurons. Cereb Cortex 12, 601–616 (2002)CrossRefGoogle Scholar
  5. 5.
    David, S.V., Hayden, B.Y., Gallant, J.L.: Spectral receptive field properties explain shape selectivity in area V4. J. Neurophysiol. 96, 3492–3505 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrzej W. Przybyszewski
    • 1
  1. 1.Department of Psychology, McGill University, Montreal, Canada, Dept of Neurology, University of Massachusetts Medical Center, Worcester, MAUSA

Personalised recommendations