Advertisement

A Decomposition Approach for Combined Heuristic and Differential Evolution Method for the Reactive Power Problem

  • B. Bhattacharyya
  • S. K. Goswami
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

The author in the present paper has attempted a variable decomposition approach. All the variables of the reactive power planning optimization do not involve cost. Those involving costs are treated as planning variables and the variables having no cost involvement are treated separately as the dispatch variables. Solution approaches are also designed separately for the two types of variables and a mixed heuristic and evolutionary strategy has been developed. As the number of variables in the evolutionary technique thus decreases, the solution becomes faster.

Keywords

Heuristics Evolutionary techniques Planning Dispatch 

References

  1. 1.
    Losi, A., Rossi, F., Russo, M., Verde, P.: A new tool for reactive power planning. IEE Proc, Genr, Transm, Distrib. 1140(4), 256–262 (1993)CrossRefGoogle Scholar
  2. 2.
    Chiang, H.D., Wang, J.C., Cockings, O., Shin, H.D.: Optimal Capacitor Placements in Distribution Systems: Part 1: A new Formulation and the Overall Problem. IEEE Trans, power Delivery 5(2), 634–642 (1990)CrossRefGoogle Scholar
  3. 3.
    Chiang, H.D., Wang, J.C., Cockings, O., Shin, H.D.: Optimal Capacitor Placements in Distribution Systems: Part 2: A new Formulation and the Overall Problem. IEEE Trans, power Delivery 5(2), 643–649 (1990)CrossRefGoogle Scholar
  4. 4.
    Rahaman, K.H.A., Shahidehpour, S.M.: A Fuzzy Based Optimal Reactive Power Control. IEEE Trans, Power Syst. 8(2), 66–668 (1993)Google Scholar
  5. 5.
    Rahaman, K.H.A., Shahidehpour, S.M.: Reactive Power Optimization Using Fuzzy Load Representation. IEEE Trans, Power Syst. 9(2), 898–905 (1994)CrossRefGoogle Scholar
  6. 6.
    Chen, Y.L.: An interactive Fuzzy – Norm satisfying method for Multiobjective Reactive power sources planning. IEEE Trans on Power Syst. 15(3), 1154–1160 (2000)CrossRefGoogle Scholar
  7. 7.
    Jwo, W.S., Liu, C.W., Liu, C.C., Hsiao, Y.T.: Hybrid expert and simulated annealing approach to optimal reactive power planning. IEE Proc, Genr, Transm, Distrib. 142(4), 381–385 (1995)CrossRefGoogle Scholar
  8. 8.
    Rahaman, K.H.A., Shahidehpour, S.M., Daneshdoost, M.: AI Approach to Optimal Var control with Fuzzy Reactive Load. IEEE Trans, Power Syst. 10(1), 88–97 (1995)CrossRefGoogle Scholar
  9. 9.
    Yokoyama, R., Niimura, T., Nakanishi, Y.: A coordinated Control Of Voltage And Reactive Power By Heuristic Modelling And Approximate Reasoning. IEEE Trans, Power Syst. 8(2), 636–670 (1993)CrossRefGoogle Scholar
  10. 10.
    Mantovani, J.R.S., Garcia, A.V.: A heuristic method for reactive power planning. IEEE Trans on Power Syst. 11(1), 68–74 (1996)CrossRefGoogle Scholar
  11. 11.
    Chis, M., Salama, M.M.A., Jayaram, S.: Capacitor Placement In Distribution Systems Using Heuristic Search Strategies. IEE Proc. – C. 97, 225–230Google Scholar
  12. 12.
    Hong, Y., Liu, C.C.: A Heuristic and Algorithmic Approach to Var Planning. IEEE Trans on Power Syst. 7(2), 505–512 (1992)CrossRefGoogle Scholar
  13. 13.
    Iba, K.: Reactive Power Optimization by Genetic Algorithm. IEEE Trans, Power Syst. 9(2), 685–692 (1994)CrossRefGoogle Scholar
  14. 14.
    Lee, k.y., Bai, X., Park, Y.M.: Optimization method for reactive power planning by using a modified simple Genetic Algorithm. IEEE Trans on Power Syst. 10(4), 1843–1850 (1995)CrossRefGoogle Scholar
  15. 15.
    Miu, K.N., Chiang, H.D., Darling, G.: Capacitor placement, replacement and control in large scale distribution systems by a GA- based two stage Algorithm. IEEE Trans on Power Syst 12(3) (1997)Google Scholar
  16. 16.
    Abdullah, W.N.W., Saibon, H., Zaia, A.A.M., Lo, K.L.: Genetic Algorithm for reactive power Dispatch. IEEE Catalogue No 98EX137, 160–163 (1998)Google Scholar
  17. 17.
    Xiangping, M., Zhishan, L., Huaguang, Z.: Fast synthetic Genetic Algorithm and its application to optimal control of reactive power flow. IEEE 0-7803-4754-4/98, 1454–1458 (1998)Google Scholar
  18. 18.
    Ghose, T., Goswami, S.K., Basu, S.K.: Solving Capacitor placement problems in Distribution systems using Genetic Algorithms. Electric Machines and Power systems. 27, 429–441 (1999)CrossRefGoogle Scholar
  19. 19.
    Mantovani, J.R.S., Modesto, S.A.G., Garcia, A.V.: Var Planning Using Genetic Algorithm and linear programming. IEE Proc, Gener. Transm. Distrib. 148(3), 257–262 (2001)CrossRefGoogle Scholar
  20. 20.
    Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V.: Optimal Power flow by Enhanced Genetic Algorithm. IEEE Trans on Power Syst. 17(2), 229–236 (2002)CrossRefGoogle Scholar
  21. 21.
    Wu, O.H., Ma, J.T.: Power System Reactive Power Dispatch Using Evolutionary Programming. IEEE Trans, Power Syst. 10(3), 1243–1248 (1995)CrossRefGoogle Scholar
  22. 22.
    Ma, J.T., Lai, L.L.: Evolutionary programming approach to reactive power planning. IEE Proc, Gener. Transm. Distrib. 143(4), 365–370 (1996)CrossRefGoogle Scholar
  23. 23.
    Yeh, E.C., Venkata, S.S., Sumic, Z.: Improved Distribution system planning using computational evolution. IEEE Trans on Power Syst. 11(2), 668–674 (1996)CrossRefGoogle Scholar
  24. 24.
    Lai, L.L., Ma, J.T.: Application of Evolutionary programming to reactive power planning- comparision with nonlinear approach. IEEE Trans, Power Syst. 12(1), 198–206 (1997)CrossRefGoogle Scholar
  25. 25.
    Lee, K.Y., Yang, F.F.: Optimal Reactive Power Planning using Evolutionary Algorithms: A Comparative Study for Evolutionary Programming, Evolutionary strategy, Genetic Algorithm and Linear Programming. IEEE Trans, Power Syst. 13(1), 101–108 (1998)CrossRefGoogle Scholar
  26. 26.
    Wong, K.P., Yuryevich, J.: Evolutionary-programming-based Algorithm for environmentally-constrained economic dispatch.  13(2), 301–306 (1998)Google Scholar
  27. 27.
    Gomes, J.R., Saavedra, O.R.: Optimal Reactive Power Dispatch Using Evolutionary Computation: Extended algorithms. IEE Proc, Gener. Transm. Distrib. 146(6), 586–592 (1999)CrossRefGoogle Scholar
  28. 28.
    Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment. IEEE Trans, Power Syst. 15(4), 1232–1239 (2000)CrossRefGoogle Scholar
  29. 29.
    Storn, R., Price, K.: Minimizing the real functions of the ICEC’ 96 contest by differential evolution. IEEE 0-7803-2902-3/9, 842–844 (1996)Google Scholar
  30. 30.
    Cheng, S.L., Hwang, C.: Optimal Approximations of Linear systems by a Differential Evolution Algorithm. IEEE Trans on Systems, Man and Cybernetics, Part A: Systems and Humans 31(6), 698–707 (2001)CrossRefGoogle Scholar
  31. 31.
    Lampinen, J.: A Constraint Handling approach for the Differential Evolution Algorithm. IEEE 0-7803-7282-4/02, 1468–1473 (2002)Google Scholar
  32. 32.
    Su, C.T., Lee, C.S.: Modified Differential Evolution method for capacitor placement of Distribution systems. IEEE 03-7525-4/02, 208–213 (2002)Google Scholar
  33. 33.
    Zhang, W.J., Xie, X.F.: DEPSO: Hybrid particle swarm with differential operator. IEEE 07803-7952-7/03-2003, 3816–3821 (2003)Google Scholar
  34. 34.
    Yan, W., Lu, S., Yu, D.C.: A Novel Optimal Reactive Power Dispatch Method Based on Improved Hybrid Evolutionary Programming Technique. IEEE Trans, Power Syst. 19(2), 913–918 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • B. Bhattacharyya
    • 1
  • S. K. Goswami
    • 2
  1. 1.Dept. of Electrical Engineering, NIT, Durgapur 713209India
  2. 2.Dept. of Electrical Engineering, Jadavpur University, Kolkata 700032India

Personalised recommendations