Advertisement

The Possibilities of Fuzzy Logic in Image Processing

  • M. Nachtegael
  • T. Mélange
  • E. E. Kerre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

It is not a surprise that image processing is a growing research field. Vision in general and images in particular have always played an important and essential role in human life. Not only as a way to communicate, but also for commercial, scientific, industrial and military applications. Many techniques have been introduced and developed to deal with all the challenges involved with image processing. In this paper, we will focus on techniques that find their origin in fuzzy set theory and fuzzy logic. We will show the possibilities of fuzzy logic in applications such as image retrieval, morphology and noise reduction by discussing some examples. Combined with other state-of-the-art techniques they deliver a useful contribution to current research.

Keywords

Fuzzy Logic Similarity Measure Noise Reduction Image Retrieval Query Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Angulo, J.: Unified morphological color processing framework in a lum/sat/hue representation. In: Proceedings of ISMM 2005, International Symposium on Mathematical Morphology, France, pp. 387–396 (2005)Google Scholar
  2. 2.
    Brunelli, R., Mich, O.: Histograms analysis for image retrieval. Pattern Recognition 34, 1625–1637 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chamorro-Martínez, J., Medina, J.M., Barranco, C., Galán-Perales, E., Soto-Hidalgo, J.M.: An approach to image retrieval on fuzzy object-relational database using dominant color descriptors. In: Proceedings of the 4th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT, pp. 676–684 (2005)Google Scholar
  4. 4.
    Chang, S.: Content-based indexing and retrieval of visual information. IEEE Signal Processing Magazine 14(4), 45–48 (1997)CrossRefGoogle Scholar
  5. 5.
    Chen, S.M., Yeh, M.S., Hsiao, P.Y.: A comparison of similarity measures of fuzzy values. Fuzzy Sets and Systems 72, 79–89 (1995)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Comer, M.L., Delp, E.J.: Morphological operations for color image processing. Journal of Electronic Imaging 8(3), 279–289 (1999)CrossRefGoogle Scholar
  7. 7.
    De Baets, B.: Fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Kluwer Academic Publishers, Boston (1997)Google Scholar
  8. 8.
    Del Bimbo, A.: Visual Information Retrieval. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  9. 9.
    De Witte, V., Schulte, S., Nachtegael, M., Van der Weken, D., Kerre, E.E.: Vector morphological operators for colour images. In: Kamel, M., Campilho, A. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 667–675. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Hanbury, A., Serra, J.: Mathematical morphology in the CIELAB space. Image Analysis and Stereology 21(3), 201–206 (2002)MathSciNetGoogle Scholar
  11. 11.
    Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(4), 532–550 (1987)CrossRefGoogle Scholar
  12. 12.
    Li, J., Li, Y.: Multivariate mathematical morphology based on principal component analysis: initial results in building extraction. International Archives for Photogrammetry, Remote Sensing and Spatial Information Sciences 35(B7), 1168–1173 (2004)Google Scholar
  13. 13.
    Louverdis, G., Andreadis, I., Tsalides, P.: New fuzzy model for morphological color image processing. In: Proceedings of IEEE Vision, Image and Signal Processing, pp. 129–139 (2002)Google Scholar
  14. 14.
    Lu, G., Phillips, J.: Using perceptually weighted histograms for colour-based image retrieval. In: Proceedings of the 4th International Conference on Signal Processing, pp. 1150–1153 (1998)Google Scholar
  15. 15.
    Nachtegael, M., Kerre, E.E.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets and Systems 124(1), 73–86 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nachtegael, M., Schulte, S., Van der Weken, D., De Witte, V., Kerre, E.E.: Fuzzy filters for noise reduction: the case of impulse noise. In: Proceedings of SCIS-ISIS (2004)Google Scholar
  17. 17.
    Nachtegael, M., Schulte, S., Van der Weken, D., De Witte, V., Kerre, E.E.: Fuzzy Filters for noise reduction: the case of gaussian noise. In: Proceedings of FUZZ-IEEE (2005)Google Scholar
  18. 18.
    Nachtegael, M., Schulte, S., De Witte, V., Mélange, T., Kerre, E.E.: Color image retrieval using fuzzy similarity measures and fuzzy partitions. In: Proceedings of ICIP 2007, 14th International Conference on Image Processing, 7th edn., San Antonio, USA (2007)Google Scholar
  19. 19.
    Omhover, J.F., Detyniecki, M., Rifqi, M., Bouchon-Meunier, B.: Ranking invariance between fuzzy similarity measures applied to image retrieval. In: Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, pp. 1367–1372. IEEE, Los Alamitos (2004)Google Scholar
  20. 20.
    Schulte, S., Nachtegael, M., De Witte, V., Van der Weken, D., Kerre, E.E.: A new two step color filter for impulse noise. In: Proceedings of the 11th Zittau Fuzzy Colloquium, pp. 185–192 (2004)Google Scholar
  21. 21.
    Schulte, S., Nachtegael, M., De Witte, V., Van der Weken, D., Kerre, E.E.: A fuzzy impulse noise detection and reduction method. IEEE Transactions on Image Processing 15(5), 1153–1162 (2006)CrossRefGoogle Scholar
  22. 22.
    Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.E.: A new fuzzy filter for the reduction of randomly valued impulse noise. In: Proceedings of ICIP 2006, 13th International Conference on Image Processing, Atlanta, USA, pp. 1809–1812 (2006)Google Scholar
  23. 23.
    Schulte, S., Nachtegael, M., De Witte, V., Van der Weken, D., Kerre, E.E.: Fuzzy impulse noise reduction methods for color images. In: Proceedings of FUZZY DAYS 2006, International Conference on Computational Intelligence, Dortmund (Germany), pp. 711–720 (2006)Google Scholar
  24. 24.
    Schulte, S., De Witte, V., Nachtegael, M., Mélange, T., Kerre, E.E.: A new fuzzy additive noise reduction method. In: Image Analysis and Recognition - Proceedings of ICIAR 2007. LNCS, vol. 4633, pp. 12–23. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Serra, J.: Image analysis and mathematical morphology. Academic Press Inc, Londen (1982)zbMATHGoogle Scholar
  26. 26.
    Sharma, G.: Digital Color Imaging Handbook. CRC Press, Boca Raton, USA (2003)Google Scholar
  27. 27.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1379 (2000)CrossRefGoogle Scholar
  28. 28.
    Stanchev, P., Green, D., Dimitrov, B.: High level color similarity retrieval. International Journal of Information Theories & Applications 10(3), 283–287 (2003)Google Scholar
  29. 29.
    Stanchev, P.: Using image mining for image retrieval. In: Proceedings of the IASTED International Conference on Computer Science and Technology, pp. 214–218 (2003)Google Scholar
  30. 30.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: The applicability of similarity measures in image processing. Intellectual Systems 6(1-4), 231–248 (2001)Google Scholar
  31. 31.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: An overview of similarity measures for images. In: Proceedings of ICASSP 2002, IEEE International Conference on Acoustics, Speech and Signal Processing, Orlando, USA, pp. 3317–3320 (2002)Google Scholar
  32. 32.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: Using similarity measures for histogram comparison. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 396–403. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: Using similarity measures and homogeneity for the comparison of images. Image and Vision Computing 22(9), 695–702 (2004)CrossRefGoogle Scholar
  34. 34.
    Van der Weken, D., De Witte, V., Nachtegael, M., Schulte, S., Kerre, E.E.: A component-based and vector-based approach for the construction of quality measures for colour images. In: Proceedings of IPMU 2006, International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris (France), pp. 1548–1555 (2006)Google Scholar
  35. 35.
    Van der Weken, D., De Witte, V., Nachtegael, M., Schulte, S., Kerre, E.E.: Fuzzy similarity measures for colour images. In: Proceedings of CIS-RAM 2006, IEEE International Conferences on Cybernetics & Intelligent Systems and Robotics, Automation & Mechatronics, Bangkok (Thailand), pp. 806–810 (2006)Google Scholar
  36. 36.
    Vansteenkiste, E., Van der Weken, D., Philips, W., Kerre, E.E.: Psycho-visual evaluation of fuzzy similarity measures. In: Proceedings of SPS-DARTS 2006, 2nd Annual IEEE BENELUX/DSP Valley Signal Processing Symposium, Antwerp (Belgium), pp. 127–130 (2006)Google Scholar
  37. 37.
    Vansteenkiste, E., Van der Weken, D., Philips, W., Kerre, E.E.: Evaluation of the perceptual performance of fuzzy image quality measures. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4251, pp. 623–630. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Zadeh, L.: Fuzzy Sets. Information Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Zlokolica, V., De Geyter, M., Schulte, S., Pizurica, A., Philips, W., Kerre, E.E.: Fuzzy logic recursive change detection for tracking and denoising of video sequences. In: Proceedings of IS&T/SPIE, 17th Annual Symposium Electronic Imaging Science and technology, Video Communications and Processing, vol. 5685, pp. 771–782 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Nachtegael
    • 1
  • T. Mélange
    • 1
  • E. E. Kerre
    • 1
  1. 1.Ghent University, Dept. of Applied Mathematics and Computer Science, Fuzziness and Uncertainty Modeling Research Unit, Krijgslaan 281 - S9, B-9000 GentBelgium

Personalised recommendations