Advertisement

FEM 2D Analysis of Mild Traumatic Brain Injury on a Child

  • Ernesto Ponce
  • Daniel Ponce
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

Traumatic brain injury is one of the most frequent causes of disability amongst children and adolescents. There are cognitive and neurological effects caused by repetitive head injuries. Learning deficiency is likely to be the result of early head injurie. This may impact the ability to control emotions and exhibit inappropriate behaviour. These children have trouble responding to subtle social cues and planning difficult tasks. Concussions can occur whenever there is a collision of the head against a hard object. The aim of this investigation is the modelling, by means of the two-dimensional Finite Element Method, of brain stress in children caused by head injuries. Three impact cases were analyzed: a concentrate left brain side blow, a diffused blow and a frontal head collision. The brain damage is determined by comparing the last resistance of the arteriole and neurone. The mathematical models can be used for protective design and demonstrating the brain damage.

Keywords

brain injury computational neuroscience bio-informatics finite elements 

References

  1. 1.
    Antish, P., et al.: Measurements of mechanical properties of bone material in vitro by ultrasound reflection: methodology and comparison with ultrasound transmission. Journal of Bone Miner Res. 3, 417–426 (1991)CrossRefGoogle Scholar
  2. 2.
    Lee, I.: Interpretación Clínica de la Escala de Inteligencia de Wechsler. TEA Ediciones S.A., Madrid (1989)Google Scholar
  3. 3.
    Heys, et al.: First-order system least-squares (FOSLS) for modelling blood flow. Medical Engineering and Phisics, Elsevier 28, 495–503 (2006)MathSciNetGoogle Scholar
  4. 4.
    Müsterberg, E.: Test Guestáltico Visomotor para Niños. Ed. Guadalupe. México (1999)Google Scholar
  5. 5.
    Ourselin, S.: Recalage d’images médicales par appariement de regions- Application á la construction d’atlas histologiques 3D., Tesis doctoral, Université de Nice (2002)Google Scholar
  6. 6.
    Pitiot, A.: Piecewise Affine Registration of Biological Images for Volume Reconstruction. Medical Image Analysis 3(3), 465–483 (2006)CrossRefGoogle Scholar
  7. 7.
    Raine, A.: Prefrontal Damage in People with Antisocial Personality Disorder (Paper)(2000)Google Scholar
  8. 8.
    Sklar, F., Elashvili, I.: The pressure-volume function of brain elasticity. Physiological consideration and clinical applications. Journal of Neurosug 47(5), 670–679 (1977)CrossRefGoogle Scholar
  9. 9.
    The Franklin Institute on Line, The human brain (2005), http://www.fi.edu.brain/index.htm#
  10. 10.
    The Virtual Human Brain on line. Actual human brain dissection images (2005), http://www.vh.org/adult/provider/anatomy/BrainAnatomy/BrainAnatomy.html
  11. 11.
    Torres, H., Zamorano, M.: SAR Simulation of Chiral Waves in a Head model. Rev. Facing 1(9), 3–19 (2001)Google Scholar
  12. 12.
    Yong, F., Tianzi, J.: Volumetric Segmentation of Brain Images Using Paralell Genetic Algorithms. IEEE Transactions on Medical Imaging 21(8), 904–909 (2002)CrossRefGoogle Scholar
  13. 13.
    Zienkiewicz, O.: El Método de los Elementos Finitos, Reverté, España (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ernesto Ponce
    • 1
  • Daniel Ponce
    • 1
  1. 1.Escuela Universitaria de Ingeniería Mecánica, Universidad de Tarapacá, AricaChile

Personalised recommendations