Automatic Guidance of a Tractor Using Computer Vision

  • Pedro Moreno Matías
  • Jaime Gómez Gil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)


This paper presents a computer vision guidance system for agricultural vehicles. This system is based on a segmentation algorithm that uses an optimum threshold function in terms of minimum quadratic value over a discriminant based on the Fisher lineal discriminant. This system has achieved not only very interesting results in the sense of segmentation, but it has also guided successfully a vehicle in a real world environment.


Segmentation Algorithm Artificial Vision Front Wheel Real World Environment Border Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pajares, G., Cruz, D.l.: Visión por computador: Imágenes digitales y aplicaciones. Ed. Ra-Ma (2001)Google Scholar
  2. 2.
    Jahns, G.: Automatic Guidance in Agriculture: A Review. ASAE paper NCR, St. Joseph. MI, 83-404 (1983)Google Scholar
  3. 3.
    Hayashi, M., Fujii, Y.: Automatic Lawn Mower Guidance Using a Vision System. In: Proceedings of the USA-Japan Symposium on Flexible Automation, New York (1988)Google Scholar
  4. 4.
    Chateau, T.: An Original Correlation and Data Fusion Based Approach to Detect a Reap Limit into a Gray Level Image. In: Proceedings of the 1997 International Conference on Intelligent Robots and Systems, pp. 1258–1263 (1997)Google Scholar
  5. 5.
    Reid, J.F, Searcy, S.W.: Detecting Crop Rows Using the Hough Transform. Presented at the 1986 summer meeting of the ASAE, San Luis Obispo (1986)Google Scholar
  6. 6.
    Gerrish, J.: Path-finding by Image Processing in Agricultural Field Operations. Transactions of the Society of Automotive Engineers (1987).Google Scholar
  7. 7.
    Klassen: Agricultural Vehicle Guidance Sensor. Paper 93-1008 Presented at the 1993 International Summer Meeting of the ASAE, Spokane, WA (June 1993)Google Scholar
  8. 8.
    Ollis, M., Stentz, A.: First Results in Crop Line Tracking. In: Proceedings of IEEE Conference on Robotics and Automation (ICRA 1996), pp. 951–956. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  9. 9.
    Bulanon, D.M., Kataoka, T., Ota, Y., Hiroma, T.: A Segmentation Algorithm for the Automatic Recognition of Fuji Apples at Harvest. Biosystems Engineering 83, 405–412 (2002)CrossRefGoogle Scholar
  10. 10.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis, pp. 114–118. Wiley & Sons, Chichester (1973)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pedro Moreno Matías
    • 1
  • Jaime Gómez Gil
    • 1
  1. 1.University of Valladolid, Departament of Teory Signal, Comunications and Telematic Engineering, de Teoría de la Señal, Comunicaciones e Ingeniería Telemática, Campus Miguel Delibes, 47011, Valladolid 

Personalised recommendations