Spatial Topology of Equitemporal Points on Signatures for Retrieval

  • D. S. Guru
  • H. N. Prakash
  • T. N. Vikram
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

In this paper, we address the problem of quick retrieval of online signatures. The proposed methodology retrieves signatures in the database for a given query signature according to the decreasing order of their spatial similarity with the query. Similarity is computed based on orientations of corresponding edges drawn in between sampled points of the signatures. We retrieve the best hypotheses in a simple yet efficient way to speed up the subsequent recognition stage. The runtime of the signature recognition process is reduced, because the scanning of the entire database is narrowed down to contrasting the query with a few top retrieved hypotheses. The experimentation conducted on a large MCYT_signature database [1] has shown promising results.

Keywords

Signature retrieval Spatial similarity Online Signature 

References

  1. 1.
  2. 2.
    Ismail, M.A., Gad, S.: Off-line Arabic signature verification. Pattern Recognition 33, 1727–1740 (2002)CrossRefGoogle Scholar
  3. 3.
    Lee, S., Pan, J.C.: Off-line tracing and representation of signatures. IEEE Transaction Systems man and Cybernetics 22, 755–771 (1992)MATHCrossRefGoogle Scholar
  4. 4.
    Gupta, G., McCabe, A.: Review of dynamic handwritten signature verification. Technical Report, James Cook University Townsville, Australia (1997)Google Scholar
  5. 5.
    Found, B., Rogers, D., Schmittat, R.: Matrix Analysis: A technique to investigate the spatial properties of handwritten images. Journal of Forensic Document Examination 11, 54–74 (1998)Google Scholar
  6. 6.
    Martinez, E.F., Sanchez, A., Velez, J.: Support vector machines versus Multilayer perceptrons for efficient off-line signature recognition. Artificial Intelligence 19, 693–704 (2006)Google Scholar
  7. 7.
    Ke, H., Sethi, I.K.: Handwritten signature retrieval and identification. Pattern Recognition Letters 17, 83–90 (1995)Google Scholar
  8. 8.
    Chang, S.K., Li, Y.: Representation of multi resolution symbolic and binary pictures using 2D-H strings. In: Proceedings of the IEEE Workshop on Languages for Automata, Maryland, pp. 190–195 (1998)Google Scholar
  9. 9.
    Guru, D.S., Punitha, P., Nagabhushan, P.: Archival and retrieval of symbolic images: An invariant scheme based on triangular spatial relationship. Pattern Recognition Letters 24(14), 2397–2408 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Gudivada, V.N., Raghavan, V.V.: Design and evaluation of algorithms for image retrieval by spatial similarity. ACM Transactions on Information Systems 13(2), 115–144 (1995)CrossRefGoogle Scholar
  11. 11.
    Ghosh, A.K.: An optimum choice of k in nearest neighbor classification. Computational Statistics and Data Analysis 50(11), 3113–3123 (2006)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chang, C.C.: Spatial match retrieval of symbolic pictures. Information Science and Engineering 7(3), 405–422 (1991)Google Scholar
  13. 13.
    Guru, D.S., Nagabhushan, P.: Triangular spatial relationship: A new approach for spatial knowledge representation. Pattern Recognition Letters 22(9), 999–1006 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • D. S. Guru
    • 1
  • H. N. Prakash
    • 1
  • T. N. Vikram
    • 1
  1. 1.Dept of Studies in Computer Science,University of Mysore, Mysore - 570 006India

Personalised recommendations