Advertisement

Segmenting Multiple Textured Objects Using Geodesic Active Contour and DWT

  • Surya Prakash
  • Sukhendu Das
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

We address the issue of segmenting multiple textured objects in presence of a background texture. The proposed technique is based on Geodesic Active Contour (GAC) and can segment multiple textured objects from the textured background. For an input texture image, a texture feature space is created using scalogram obtained from discrete wavelet transform (DWT). Then, a 2-D Riemannian manifold of local features is extracted via the Beltrami framework. The metric of this surface provides a good indicator of texture changes, and therefore, is used in GAC algorithm for texture segmentation. Our main contribution in this work lie in the development of new DWT and scalogram based texture features which have a strong discriminating power to define a good texture edge metric which is used in GAC technique. We validate our technique using a set of synthetic and natural texture images.

Keywords

Snake segmentation texture DWT scalogram 

References

  1. 1.
    Caselles, V., Kimmel, R., Saprio, G.: Geodesic active contours. Int. J. of Computer Vision 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  2. 2.
    Sapiro, G.: Color snake. CVIU 68(2), 247–253 (1997)MathSciNetGoogle Scholar
  3. 3.
    Clerc, M., Mallat, S.: The texture gradient equations for recovering shape from texture. IEEE Trans. on PAMI 24(4), 536–549 (2002)Google Scholar
  4. 4.
    Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Proc. 7(3), 310–318 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Sagiv, C., Sochen, N.A., Zeevi, Y.Y.: Gabor-space geodesic active contours. In: Sommer, G., Zeevi, Y.Y. (eds.) AFPAC 2000. LNCS, vol. 1888, pp. 309–318. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. In: Proc. of ICCV 1999, pp. 926–932 (1999)Google Scholar
  7. 7.
    Sagiv, C., Sochen, N., Zeevi, Y.: Integrated active contours for texture segmentation. IEEE Trans. on Image Proc. 15(6), 1633–1646 (2006)CrossRefGoogle Scholar
  8. 8.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  9. 9.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)zbMATHGoogle Scholar
  10. 10.
    Prakash, S., Das, S.: External force modeling of snake using DWT for texture object segmentation. In: Proc. of ICAPR 2007, ISI Calcutta, India, pp. 215–219 (2007)Google Scholar
  11. 11.
    Laws, K.: Textured image segmentation. PhD thesis, Dept. of Elec. Engg., Univ. of Southern California (1980)Google Scholar
  12. 12.
    Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: Proc. of CVPR 2003, pp. II–699–704 (2003)Google Scholar
  13. 13.
    Awate, S.P., Tasdizen, T., Whitaker, R.T.: Unsupervised texture segmentation with nonparametric neighborhood statistics. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 494–507. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gupta, L., Das, S.: Texture edge detection using multi-resolution features and self-organizing map. In: Proc. of ICPR 2006 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Surya Prakash
    • 1
  • Sukhendu Das
    • 1
  1. 1.VP Lab, Dept. of CSE, IIT Madras, Chennai-600 036India

Personalised recommendations