Image Quality Assessment Based on Perceptual Structural Similarity

  • D. Venkata Rao
  • L. Pratap Reddy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)


We present a full reference objective image quality assessment technique which is based on the properties of the human visual system (HVS). It consists of two major components: 1) structural similarity measurement (SSIM) between the reference and distorted images, mimicking the overall functionality of HVS in a top down frame work. 2) A visual attention model which indicates perceptually important regions in the reference image based on the characteristics of intermediate and higher visual processes through the use of Importance Maps. Structural similarity in a region is weighted, depending on the perceptual importance of the region to arrive at Perceptual Structural Similarity Metric (PSSIM) indicative of the image quality.


Objective image quality HVS structural distortion perceptually important regions 


  1. 1.
    Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Transactions on Communications 43(12), 2959–2965 (1995)CrossRefGoogle Scholar
  2. 2.
    Karunasekera, S.A., Kingsbury, N.G.: A distortion measure for blocking artifacts in images based on human visual sensitivity. IEEE Transactions on Image Processing 4(6), 713–724 (1995)CrossRefGoogle Scholar
  3. 3.
    Mill, N.B.: A visual model weighted cosine transform for image compression and quality assessment. IEEE Transactions on Communications 33(6), 551–557 (1985)CrossRefGoogle Scholar
  4. 4.
    Saghri, J.A.: Image quality measure based on a human visual system model. Optical Engineering 28(7), 813–818 (1989)Google Scholar
  5. 5.
    Daly, S.: The visible differences predictor: an algorithm for the assessment of image fidelity. In: Watson, A.B. (ed.) Digital Images and Human Vision, Ch. 14, pp. 179–206. MIT press, Cambridge (1993)Google Scholar
  6. 6.
    Lubin, J.: A visual discrimination model for imaging system design and evaluation. In: Peli, E. (ed.) Vision Models for Target Detection and Recognition, Ch.10, pp. 245–283. World Scientific Publishing (1995)Google Scholar
  7. 7.
    Watson, A.B.: DCT quantization matrices visually optimize for individual images. In: Human Vision, Visual Processing and Digital Display IV, Proc. SPIE, vol. 1913, pp. 202–216 (1993)Google Scholar
  8. 8.
    Girod, B.: What’s wrong with mean-squared error. In: Watson, A.B. (ed.) Digital Images and Human Vision, pp. 207–220. MIT Press, Cambridge (1993)Google Scholar
  9. 9.
    Wandell, B.A.: Foundations of Vision, Sinauer Associates, Inc. (1995)Google Scholar
  10. 10.
    Wang, Z., Sheikh, H.R., Bovik, A.C.: Objective video quality assessment. In: Furht, B., Marques, O. (eds.) The Handbook of Video Databases: Design and Applications, pp. 1041–1078. CRC press (September 2003)Google Scholar
  11. 11.
    Wang, Z., Lu, L., Bovik, A.C.: Video quality assessment based on structural distortion measurement, Signal Processing: Image Communication. special issue on objective video quality metrics 19 (January 2004)Google Scholar
  12. 12.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simocelli, E.P.: Image quality assessment: From error measurement to structural similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  13. 13.
    Geri, G.A., Zeevi, Y.Y.: Visual assessment of variable-resolution imagery. Journal of the Optical Society of America 12(10), 2367–2375 (1995)CrossRefGoogle Scholar
  14. 14.
    Kortum, P., Geisler, W.: Implementation of a foveated image coding system for image bandwidth reduction. In: SPIE - Human Vision and Electronic Imaging, vol. 2657, pp. 350–360 (February 1996)Google Scholar
  15. 15.
    Stelmach, L.B., Tam, W.J., Hearty, P.J.: Static and dynamic spatial resolution in image coding: An investigation of eye movements. In: Proceedings of the SPIE, San Jose, vol. 1453, pp. 147–152 (1991)Google Scholar
  16. 16.
    Yarbus, A.L.: Eye Movements and Vision Press, New York (1967)Google Scholar
  17. 17.
    Cave, R.: The feature Gate model of visual selection. Psychological research 62, 182–194 (1999)CrossRefGoogle Scholar
  18. 18.
    Findlay, J.: The visual stimulus for saccadic eye movement in human observers. Perception 9, 7–21 (1980)CrossRefGoogle Scholar
  19. 19.
    Senders, J.: Distribution of attention in static and dynamic scenes. In: Proceedings SPIE, San Jose, vol. 3016, pp. 186–194 (February 1997)Google Scholar
  20. 20.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)Google Scholar
  21. 21.
    Richards, W., Kaufman, L.: Centre-of-Gravity Tendencies for Fixations and Flow Patterns. Perception and Psychology 5, 81–84 (1969)Google Scholar
  22. 22.
    Gonzalez, Woods.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  23. 23.
    Mannan, S.K., Ruddock, K.H., Wooding, D.S.: The Relationship between the Locations of Spatial Features and Those of Fixations Made during Visual Examination of Briefly Presented Images. Spatial Vision 10(3), 165–188 (1996)Google Scholar
  24. 24.
    Sheikh, H.R., Bovik, A.C., Cormack, L., Wang, Z.: LIVE Image Quality Assessment Database (2004),
  25. 25.
    Corriveau, P., et al.: Video quality experts group: Current results and future directions. In: presented at the SPIE Visual Communication and Image Processing, vol. 4067 (June 2000)Google Scholar
  26. 26.
    Van Dijk, A.M., Martens, J.B., Watson, A.B.: Quality assessment of coded images using numerical category scaling. In: Proc. SPIE, vol. 2451, pp. 90–101 (March 1995)Google Scholar
  27. 27.
    VQEG: Final report from the video quality experts group on the validation of objective models of video quality assessment (March 2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • D. Venkata Rao
    • 1
  • L. Pratap Reddy
    • 1
  1. 1.Bapatla Engineering College, Bapatla, India, JNTU College of Engineering, HyderabadIndia

Personalised recommendations