Design of a Differential Power Analysis Resistant Masked AES S-Box

  • Kundan Kumar
  • Debdeep Mukhopadhyay
  • Dipanwita RoyChowdhury
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4859)


Gate level masking is one of the most popular countermeasures against Differential Power Attack (DPA). The present paper proposes a masking technique for AND gates, which are then used to build a balanced and masked multiplier in GF(2 n ). The circuits are shown to be computationally secure and have no glitches which are dependent on unmasked data. Finally, the masked multiplier in GF(24) is used to implement a masked AES S-Box in GF(24)2. Power measurements are taken to support the claim of random power consumption.


Power Consumption Advance Encryption Standard Primitive Polynomial Differential Power Analysis Critical Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blomer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Trichina, E., Korkishko, T., Lee, K.H.: Small Size, Low Power, Side Channel-Immune AES Coprocessor: Design and Synthesis Results. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) Advanced Encryption Standard – AES. LNCS, vol. 3373, pp. 113–127. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and related attacks (1998),
  5. 5.
    Fahn, P.N., Pearson, P.K.: IPA: A New Class of Power Attacks. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 173–186. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis - The ”Duplication” Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power Analysis, What is Now Possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Schindler, W.: A Combined Timing and Power Attack. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Yen, S.-M.: Amplified Differential Power Cryptanalysis on Rijndael Implementations with Exponentially Fewer Power Traces. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 106–117. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an ASIC AES implementation. Proceedings ofInformation Technology: Coding and Computing 2, 546–552 (2004)CrossRefGoogle Scholar
  11. 11.
    Menicocci, R., Pascal, J.: Elaborazione Crittografica di Dati Digitali Mascherati, Italian Patent IT MI0020031375A (July 2003)Google Scholar
  12. 12.
    Messerges, T.S., Dabbish, E.A., Puhl, L.: Method and Apparatus for Preventing Information Leakage Attacks on a Microelectronic Assembly. US Patent 6,295,606 (September 2001), Available online at
  13. 13.
    Golić, J.D.: Random Masking in Hardware. IEEE Transactions on Circuits and Systems-I 54(2) (2007)Google Scholar
  14. 14.
    Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Chari, S., Jutla, C.S., Rao, J., Rohtagi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Jan, M.: Digital Integrated Circuits. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  17. 17.
    Mangard, S., Schramm, K.: Pinpointing the Side-Channel Leakage of Masked AES Hardware Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Trichina, E., De Seta, D., Germani, L.: Simplified Adaptive Multiplicative Masking for AES. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 187–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kundan Kumar
    • 1
  • Debdeep Mukhopadhyay
    • 2
  • Dipanwita RoyChowdhury
    • 3
  1. 1.MTech Student, Department of Computer Science and Engg., Indian Institute of Technology, KharagpurIndia
  2. 2.Assistant Professor, Department of Computer Science and Engg., Indian Institute of Technology, MadrasIndia
  3. 3.Professor, Department of Computer Science and Engg., Indian Institute of Technology, KharagpurIndia

Personalised recommendations