Skip to main content

Maximizing Network Lifetime for Target Coverage Problem in Heterogeneous Wireless Sensor Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4864))

Abstract

This paper presents an energy-efficient distributed target coverage algorithm(EDTC) for heterogeneous wireless sensor networks(HWSN) with multiple sensing units. In order to utilize the energy more efficiently, the sensor priority is introduced in this paper to integrate the sensing ability and the remaining energy together. EDTC is locally and simultaneously carried out at each sensor in a rounding fashion. Each sensor decides the on/off status of its sensing units at the beginning of each round, and then broadcasts the decision to its one-hop neighbors. The higher the priority of a sensor is, the shorter the decision time it needs. Simulation results show that compared with Energy First(EF) scheme and Integer Linear Programming(ILP) solution, EDTC has longer network lifetime than EF, and the performance difference between EDTC and ILP solution is confined within 10%.

This work was supported by the National Natural Science Foundation of China (Grant No.60573181 and No.60673151).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vu, C.T., Gao, S.: Distributed Energy-Efficient Scheduling Approach for K-Coverage in Wireless Sensor Networks. In: Military Communications Conference, pp. 1–7 (2006)

    Google Scholar 

  2. Huang, C.-F., Tseng, Y.-C.: The Coverage Problem in a Wireless Sensor Network. In: Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, San Diego, CA, USA, pp. 115–121 (2003)

    Google Scholar 

  3. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: a Survey. Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  4. Lee, J.-J., Krishnamachari, B., Kuo, C.J.: Impact of Heterogeneous Deployment on Lifetime Sensing Coverage in Sensor Networks. In: SECON. Proceedings of the IEEE International Conference on Sensor and Ad Hoc Communications and Networks, pp. 367–376 (2004)

    Google Scholar 

  5. Cardei, M., Thai, M.T.: Energy-efficient Target Coverage in Wireless Sensor Networks. In: INFOCOM. Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1976–1984 (2005)

    Google Scholar 

  6. Cardei, M., Wu, J., Lu, M., Pervaiz, M.O.: Maximum Network Lifetime in Wireless Sensor Networks with Adjustable Sensing Ranges. In: WiMob. Proceedings of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, vol. 3, pp. 438–445 (2005)

    Google Scholar 

  7. Yang, S., Dai, F., Cardei, M., Wu, J.: On Multiple Point Coverage in Wireless Sensor Networks. In: MASS. Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems, pp. 757–764 (2005)

    Google Scholar 

  8. Wang, J., Zhong, N.: Efficient Point Coverage in Wireless Sensor Networks. Journal of Combinatorial Optimization 11(3), 291–304 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lu, M., Wu, J., Cardei, M., Li, M.: Energy-efficient Connected Coverage of Discrete Targets in Wireless Sensor Networks. In: Lu, X., Zhao, W. (eds.) ICCNMC 2005. LNCS, vol. 3619, pp. 43–52. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Chang, J.-H., Tassiulas, L.: Maximum Lifetime Routing in Wireless Sensor Networks. IEEE/ACM Trans. on Networking 12(4), 609–619 (2004)

    Article  Google Scholar 

  11. Younis, O., Fahmy, S.: Distributed Clustering in Ad-hoc Sensor Networks: a Hybrid, Energy-efficient Approach. In: Proceedings of INFOCOM 2004 (2004)

    Google Scholar 

  12. Mhatre, V.P., Rosenberg, C., Kofman, D., Mazumdar, R., Shroff, N.: A Minimum Cost Heterogeneous Sensor Network With a Lifetime Constraint. IEEE Trans. On Mobile Computing 4(1), 4–15 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hongke Zhang Stephan Olariu Jiannong Cao David B. Johnson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Z. (2007). Maximizing Network Lifetime for Target Coverage Problem in Heterogeneous Wireless Sensor Networks. In: Zhang, H., Olariu, S., Cao, J., Johnson, D.B. (eds) Mobile Ad-Hoc and Sensor Networks. MSN 2007. Lecture Notes in Computer Science, vol 4864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77024-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77024-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77023-7

  • Online ISBN: 978-3-540-77024-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics