Probabilistic Techniques for Corporate Blog Mining

  • Flora S. Tsai
  • Yun Chen
  • Kap Luk Chan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4819)


With the proliferation of blogs, or weblogs, in the recent years, information in the blogosphere is becoming increasingly difficult to access and retrieve. Previous studies have focused on analyzing personal blogs, but few have looked at corporate blogs, the numbers of which are dramatically rising. In this paper, we use probabilistic techniques to detect keywords from corporate blogs with respect to certain topics. We then demonstrate how this method can present the blogosphere in terms of topics with measurable keywords, hence tracking popular conversations and topics in the blogosphere. By applying a probabilistic approach, we can improve information retrieval in blog search and keywords detection, and provide an analytical foundation for the future of corporate blog search and mining.


Weblog search blog mining probabilistic latent semantic analysis corporate blog business blog web mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, C., Mayfield, R.: Fortune 500 Business Blogging Wiki (2006), available at:
  2. 2.
    Avesani, P., Cova, M., Hayes, C., Massa, P.: Learning Contextualised Weblog Topics. WWW 2005 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics (2005)Google Scholar
  3. 3.
    Cass, J., Munroe, K., Turcotter, S.: Corporate blogging: is it worth the hype? (2005), available at:
  4. 4.
    Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  5. 5.
    Dowling, W.G., Daniels, D.: Corporate Weblogs: Deployment, Promotion, and Measurement. The JupiterResearch Concept Report  (2006)Google Scholar
  6. 6.
    Farahat, A., Chen, F.: Improving Probabilistic Latent Semantic Analysis with Principal Component Analysis. In: EACL 2006 (2006)Google Scholar
  7. 7.
    Gill, K.E.: How Can We Measure the Influence of the Blogosphere? WWW 2004 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics (2004)Google Scholar
  8. 8.
    Glance, N.S., Hurst, M., Tomokiyo, T.: BlogPulse: Automated Trend Discovery for Weblogs. WWW 2004 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics (2004)Google Scholar
  9. 9.
    Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information Diffusion Through Blogspace. In: WWW 2004 (2004)Google Scholar
  10. 10.
    Lee, S., Hwang, T., Lee, H.-H.: Corporate blogging strategies of the Fortune 500 companies. Management Decision 44(3) (2006)Google Scholar
  11. 11.
    Hofmann, T.: Probabilistic Latent Semantic Indexing. In: SIGIR 1999 (1999)Google Scholar
  12. 12.
    Mei, Q., Liu, C., Su, H., Zhai, C.: A Probabilistic Approach to Spatiotemporal Theme Pattern Mining on Weblogs. In: WWW 2006 (2006)Google Scholar
  13. 13.
    Mishne, G., de Rijke, M.: A Study of Blog Search. In: Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 289–301. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Nakajima, S., Tatemura, J., Hino, Y., Hara, Y., Tanaka, K.: Discovering Important Bloggers based on Analyzing Blog Threads. In: WWW 2005 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics (2005)Google Scholar
  15. 15.
    Pikas, C.K.: Blog Searching for Competitive Intelligence, Brand Image, and Reputation Management. Online 29(4), 16–21 (2005)Google Scholar
  16. 16.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)Google Scholar
  17. 17.
    Prabowo, R., Thelwall, M.: A Comparison of Feature Selection Methods for an Evolving RSS Feed Corpus. Information Processing and Management 42, 1491–1512 (2006)CrossRefGoogle Scholar
  18. 18.
    Scoble, R., Israel, S.: Naked Conversations: How Blogs Are Changing the Way Businesses Talk with Customers. John Wiley & Sons, Chichester (2006)Google Scholar
  19. 19.
    Sifry, D.: Sifry’s Alerts: State of the Blogosphere (2006), Available at:
  20. 20.
    Tsai, F.S., Chan, K.L.: Detecting Cyber Security Threats in Weblogs Using Probabilistic Models. In: Yang, C.C., et al. (eds.) LNCS, vol. 4430, pp. 46–57. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Zeimpekis, D., Gallopoulos, E.: TMG: A MATLAB Toolbox for generating term-document matrices from text collections. In: Grouping Multidimensional Data: Recent Advances in Clustering, pp. 187–210. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Flora S. Tsai
    • 1
  • Yun Chen
    • 1
  • Kap Luk Chan
    • 1
  1. 1.School of Electrical & Electronic Engineering, Nanyang Technological University, 639798Singapore

Personalised recommendations