The Behavior Chain for Online Participation: How Successful Web Services Structure Persuasion

  • B. J. Fogg
  • Dean Eckles
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4744)


The success of many online services today depends on the company’s ability to persuade users to take specific actions, such as registering or inviting friends. We examined over 50 popular Web services of this kind to understand the influence processes and strategies used. We found that successful online services share a pattern of target behaviors that can be viewed as part of an overall framework. We call this framework the “Behavior Chain for Online Participation.” This paper briefly presents the general idea of a behavior chain and applies it to understanding persuasion patterns found online. We then illustrate the Behavior Chain for Online Participation by applying it to the Web service LinkedIn and other popular services. Future research may identify behavior chains in other domains and develop new research methods for validating behavior chains.


Persuasive technology participatory media online communities behavior change captology influence persuasion World Wide Web 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagozzi, R.P., Dholakia, U.M., Mookerjee, A.: Individual and group bases of social influence in online environments. Media Psychology 8, 95–126 (2006)CrossRefGoogle Scholar
  2. 2.
    Birnbaum, M.H.: Human research and data collection via the Internet. Annual Review of Psychology 55, 803–832 (2004)CrossRefGoogle Scholar
  3. 3.
    Buller, D.B., Burgoon, J.K.: Interpersonal Deception Theory. Communication Theory 6(3), 203–242 (1996)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Cialdini, R.B., Goldstein, N.J.: Social Influence: Compliance and Conformity. Annual Review of Psychology 55(1), 591 (2004)CrossRefGoogle Scholar
  6. 6.
    Danaher, B.G., McKay, H.G., Seeley, J.R.: The information architecture of behavior change websites. Journal of Medical Internet Research 7(2) (2005)Google Scholar
  7. 7.
    Dholakia, U.M., Bagozzi, R.P., Pearo, L.K.: A social influence model of consumer participation in network- and small-group-based virtual communities. International Journal of Research in Marketing 21(3), 241–263 (2004)CrossRefGoogle Scholar
  8. 8.
    Dillard, J.: The current status of research on sequential-request compliance techniques. Personality and Social Psychology Bulletin 17, 282–288 (1991)CrossRefGoogle Scholar
  9. 9.
    Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think and Do. Morgan Kaufmann, San Francisco (2003)Google Scholar
  10. 10.
    Fogg, B.J., Nass, C.: How users reciprocate to computers: an experiment that demonstrates behavior change. In: CHI 1997 Extended Abstracts on Human Factors in Computing Systems: Looking To the Future, Atlanta, Georgia, March 22 - 27, 1997, pp. 331–332. ACM Press, New York, NY (1997), CrossRefGoogle Scholar
  11. 11.
    Guadagno, R.E., Asher, T., Demaine, L., Cialdini, R.B.: When saying yes leads to saying no: Preference for consistency and the reverse foot-in-the-door effect. Personality and Social Psychology Bulletin 27, 859–867 (2001)CrossRefGoogle Scholar
  12. 12.
    Guadagno, R., Cialdini, R.: Online persuasion and compliance: Social influence on the Internet and beyond. In: Amichai-Hamburger, Y. (ed.) The social net: Human behavior in cyberspace, pp. 91–113. Oxford University Press, New York (2005)Google Scholar
  13. 13.
    Guéguen, N.: Foot-in-the-door technique and computer-mediated communication. Computers in Human Behavior 18(1), 11–15 (2002)CrossRefGoogle Scholar
  14. 14.
    Gueguen, N., Jacob, C.: Fund-Raising on the Web: The Effect of an Electronic Foot-in-the-Door on Donation. CyberPsychology & Behavior 4(6), 705 (2001)CrossRefGoogle Scholar
  15. 15.
    Hars, A., Ou, S.: Working for free? - Motivations for participating in open source projects. International Journal of Electronic Commerce 6(2), 25–39 (2001)Google Scholar
  16. 16.
    Kapoor, N., Konstan, J.A., Terveen, L.G.: How peer photos influence member participation in online communities. In: CHI 2005 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, April 02 - 07, 2005, pp. 1525–1528. ACM Press, New York (2005)CrossRefGoogle Scholar
  17. 17.
    Kelman, H.C.: Compliance, Identification, and Internalization: Three Processes of Attitude Change. Journal of Conflict Resolution, Studies on Attitudes and Communication 2(1), 51–60 (1958)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Khaled, R., Barr, P., Noble, J., Biddle, R.: Investigating Social Software as Persuasive Technology. In: IJsselsteijn, W., de Kort, Y., Midden, C., Eggen, B., van den Hoven, E. (eds.) PERSUASIVE 2006. LNCS, vol. 3962, pp. 104–107. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Skitka, L.J., Sargis, E.G.: The Internet as Psychological Laboratory. Annual Review of Psychology 57(1), 529 (2006)CrossRefGoogle Scholar
  22. 22.
    Spears, R., Postmes, T., Lea, M., Wolbert, A.: When are net effects gross products? The power of influence and influence of power in computer-mediated communication. Journal of Social Issues 58, 91–107 (2002)CrossRefGoogle Scholar
  23. 23.
    Spector, B.I.: Negotiation as a Psychological Process. The Journal of Conflict Resolution, Negotiation 21(4), 607–618 (1977)CrossRefGoogle Scholar
  24. 24.
    Thompson, L.F., Meriac, J.P., Cope, J.G.: Motivating online performance: The influences of goal setting and Internet self-efficacy. Social Science Computer Review 20, 149–160 (2002)CrossRefGoogle Scholar
  25. 25.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • B. J. Fogg
    • 1
  • Dean Eckles
    • 1
  1. 1.Persuasive Technology Lab, Center for the Study of Language and Information, Stanford University 

Personalised recommendations