Skip to main content

The Oscillatory Instability of Radiative Shock Waves

  • Chapter
  • 752 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 754))

Abstract

Shock waves undergoing radiative cooling are known to suffer from a global instability caused by rapid variations of the cooling time scale with the shock speed. In the limit of optically thin plasma, the linear stability analysis of planar shocks with a power-law cooling function ^;∝ ρ2Tα is reviewed. It is shown that the shock front can oscillate around its stationary position with increasing quantized frequencies resembling the modes of a pipe open at one end. Transition to nonlinearity is investigated by solving the full time-dependent problem by means of numerical simulations. For values of the sufficiently small (α ≲ 0.5), cooling exponent computations reveal that the shock oscillations are shown to saturate at a finite amplitude and tend to a quasi periodic cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antokhin, I. I., Owocki, S. P., & Brown, J. C.: ApJ, 611, 434 (2004)

    Article  ADS  Google Scholar 

  2. Bertschinger, E.: ApJ, 304, 154 (1986)

    Article  ADS  Google Scholar 

  3. Blondin, J. M., Wright, E. B., Borkowski, K. J., & Reynolds, S. P.: ApJ, 500, 342 (1998)

    Article  ADS  Google Scholar 

  4. Chevalier, R. A. & Imamura, J. M.: ApJ, 261, 543 (2003)

    Article  ADS  Google Scholar 

  5. Calvet, N. & Gullbring, E.: ApJ, 509, 802 (1998)

    Article  ADS  Google Scholar 

  6. Cropper, M.: Space Sci. Rev., 54, 195 (1990)

    Article  ADS  Google Scholar 

  7. Falle, S. A. E. G.: MNRAS, 172, 55 (1975)

    ADS  Google Scholar 

  8. Hartigan, P., Morse, J. A., & Raymond, J.: ApJ, 436, 125 (1994)

    Article  ADS  Google Scholar 

  9. Houck, J. C. & Chevalier, R. A.: ApJ, 395, 592 (1992)

    Article  ADS  Google Scholar 

  10. Imamura, J. N., Wolff, M. T., & Durisen, R. H.: ApJ, 276, 667 (1984)

    Article  ADS  Google Scholar 

  11. Imamura, J. N., Rashed, H., & Wolff, M. T.: ApJ, 378, 665 (1992)

    Article  ADS  Google Scholar 

  12. Imamura, J. N., Aboasha, A., Wolff, M. T., & Wood, S. W.: ApJ, 458, 327 (1996)

    Article  ADS  Google Scholar 

  13. Innes, D. E., Gidding, J. R., & Falle, S. A. E. G.: MNRAS, 226, 67 (1987)

    ADS  Google Scholar 

  14. Innes, D. E., Gidding, J. R., & Falle, S. A. E. G.: MNRAS, 227, 1021 (1987)

    ADS  Google Scholar 

  15. Kimoto, P. A. & Chernoff, D. F.: ApJ, 485, 274 (1997)

    Google Scholar 

  16. Langer, S. H., Chanmugam, G., & Shaviv, G.: ApJ, 245, L23 (1981)

    Article  ADS  Google Scholar 

  17. Langer, S. H., Chanmugam, G., & Shaviv, G.: ApJ, 258, 289 (1982)

    Article  ADS  Google Scholar 

  18. McCray, R., Kafatos, M., & Stein, R. F.: ApJ, 196, 565 (1975)

    Article  ADS  Google Scholar 

  19. Mignone, A.: ApJ, 626, 373 (2005)

    Article  ADS  Google Scholar 

  20. Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A.: ApJ Supplement, 170, 228 (2007)

    Article  ADS  Google Scholar 

  21. Saxton, C. J., Wu, K., Pongracic, H., & Shaviv, G.: MNRAS, 299, 862 (1998)

    Article  ADS  Google Scholar 

  22. Saxton, C. J. & Wu, K. MNRAS, 324, 659 (2001)

    Google Scholar 

  23. Stevens, I. R., Blondin, J. M., & Pollock, A. M. T.: ApJ, 386, 265 (1992)

    Article  ADS  Google Scholar 

  24. Strickland, R. & Blondin, J. M.: ApJ, 449, 727 (1995)

    Article  ADS  Google Scholar 

  25. Sutherland, R. S., Bicknell, G. V., & Dopita, M. A.: ApJ, 591, 238 (2003)

    Article  ADS  Google Scholar 

  26. Tóth, G. & Draine, B. T.: ApJ, 413, 176 (1993)

    Article  Google Scholar 

  27. Walder, R. & Folini, D.: AA&A, 330, L21 (1998)

    ADS  Google Scholar 

  28. Wolff, M. T., Gardner, J. H., & Wood, K. S.: ApJ, 346, 833 (1989)

    Article  ADS  Google Scholar 

  29. Wu, K., Chanmugam, G., & Shaviv, G.: ApJ, 397, 232 (1992)

    Article  ADS  Google Scholar 

  30. Wu, K., Pongracic, H., Chanmugam, G., & Shaviv, G.: PASA, Publ. Astron. Soc. Australia, 13, 93 (1996)

    ADS  Google Scholar 

  31. Wu, K.: SSRv, Space Sci. Rev., 93, 611 (2000)

    Article  ADS  Google Scholar 

  32. Saxton, C. J.: Stability properties of radiative accretion shocks with multiple cooling processes. Ph.D. Thesis, University of Sydney (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mignone, A. (2008). The Oscillatory Instability of Radiative Shock Waves. In: Massaglia, S., Bodo, G., Mignone, A., Rossi, P. (eds) Jets From Young Stars III. Lecture Notes in Physics, vol 754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76967-5_6

Download citation

Publish with us

Policies and ethics