Skip to main content

Electromagnetic Interactions and Photon–Electron Cascades

  • Chapter
  • 1204 Accesses

Overview

After a brief introduction and the presentation of a list of the fundamental electromagnetic processes we first define frequently used quantities, relations and concepts. We then review the processes that are relevant for the development of electromagnetic (photon–electron) cascades such as bremsstrahlung by electrons, pair production by photons, Coulomb scattering, energy loss of electrons by ionization, and Compton and inverse Compton scattering. Subsequently we discuss miscellaneous processes that are of lesser or no relevance for cascade development, such as photonuclear reactions and photon–photon interactions, but also processes that play a significant role for the detection of photons and electrons, like the photo effect, and processes that occur only under extreme conditions, such as the Landau-Pomeranchuk-Migdal effect, magnetic bremsstrahlung, magnetic pair production and the pre-showering effect. These topics are followed by an introduction to cascade theory that is worked out to some degree of detail. The solution of the diffusion equations under different approximations are outlined. The longitudinal shower development profile, the energy spectra and the lateral density distributions of the participating particles and photons are discussed, and the characteristic parameters like the shower age and Molière radius are introduced and defined. A collection of formulae for practical applications is given at the end.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This phenomenon is known as the Greisen-Zatsepin-Kuzmin (GZK) cutoff or effect, discussed later.

  2. 2.

    Rossi and Greisen (1941) have used the simplified expression

    $$\chi_{0}^{-1} \ = \ 4\alpha \left ( \frac{N_{A}}{A} \right ) r_{e}^{2} Z^{2} \ln (183\, Z^{-(1/3)}) \ \ [\textrm{g}\,\textrm{cm}^{-2}] \ \ .$$
    ((4.12))
  3. 3.

    A different definition of the critical energy is used by Rossi and Greisen (1941, p. 271).

  4. 4.

    The expression for no screening is (Rossi and Greisen, 1941),

    $$\begin{array}{rcl}\varphi(E,v) \mathrm{d}v = 4\alpha \frac{N_{A}}{A} Z^{2}r_{e}^{2} \left ( 1+(1-v)^{2} -\frac{2}{3}(1-v) \right ) \left ( \frac{\mathrm{d}v}{v} \right ) \nonumber \\ & & \nonumber \\ \cdot \left [ \ln \left ( \frac{2E(1-v)}{m_{e} v} \right ) - \frac{1}{2} \right ]\end{array}$$
    ((4.22))
  5. 5.

    The opening angle of the electron pair in pair production and the angles of emission of the photon and electron in the radiation process are irrelevant compared to Coulomb scattering.

  6. 6.

    When an ejected electron has sufficient energy to produce its own trail of ionization it is termed a δ -ray and the ionization which is associated with it is called secondary ionization .

  7. 7.

    For media with \(Z>1\) the thumb rule \(I(Z) \simeq 16(Z)^{0.9}\) eV is frequently used.

  8. 8.

    The compact expression \(\omega_{c} = 2\pi\nu_{\mathrm{crit}} = 3\gamma^{3}_{e}(c/\rho)\) is frequently used in place of Eq. (4.54), where c is the velocity of light [m s−1], γ e the Lorentz factor of the electron and ρ the radius of curvature [m] of the electron orbit.

  9. 9.

    The mean energy of a CMBR photon is \(\langle E_{\mathrm{ph}} \rangle \approx 6\cdot 10^{-4}\) eV. Thus, the condition of expression 4.60 is satisfied for Lorentz factors \(\gamma_{e} < 10^{9}\), corresponding to electron energies \(< 5\cdot 10^{14}\) eV.

  10. 10.

    The author wants to acknowledge the excellent lectures given by Prof. Thomas Erber in electrodynamics which he could enjoy as one of his students at the Illinois Institute of Technology in Chicago during the academic year 1957/1958.

  11. 11.

    The number of low energy photons is a multiple of that of electrons.

  12. 12.

    Geomagnetic interactions, the production of Cherenkov radiation and radio frequency emission cause additional but essentially negligible energy losses.

  13. 13.

    As pointed out by Nishimura (1967, p. 23, 2007, private communication), the importance of the Landau-Rumer theory is that it yields the exact analytic solution under approximation A in the form of complex integrals. The treatments of Bhabha and Heitler, and Carlson and Oppenheimer yield approximate series solutions.

  14. 14.

    Single, plural and multiple Coulomb scattering occur, however, single large-angle scattering events are relatively rare whereas narrow-angle multiple scattering accounts for the bulk of the events.

  15. 15.

    We use N for the total number of particles and photons and N e for the number of electrons (negatrons and positrons) only.

  16. 16.

    The subscript 2 attached to equation number (4.110), and to (4.112) and (4.113) refers to the expression for λ 2 with the negative second term of Eq. (4.110).

  17. 17.

    For further details concerning the Molière unit see Chap. 21.

  18. 18.

    See also Kamata and Nishimura (1958). For a review see Nishimura (1967).

  19. 19.

    For the definition of the Moliére radius see Sect. 4.6.11.

References

  • Aharonian, F.A., and A.M. Atoyan: Astropart. Phys., 3, p. 275 (1995).

    ADS  Google Scholar 

  • Aharonian, F.A., and A.V. Plyasheshnikov: Astropart. Phys., 19, p. 525 (2003).

    ADS  Google Scholar 

  • Aharonian, F.A.: Very High Energy Cosmic Gamma Radiation, World Scientific, Singapore (2004).

    Google Scholar 

  • Akhiezer, A.I., et al.: J. Phys. G, 20, p. 1499 (1994).

    ADS  Google Scholar 

  • Amaral, P., et al.: ATLAS TileCal Collaboration: Eur. Phys. J., C 20, p. 487 (2001).

    ADS  Google Scholar 

  • Anguelov, V., and H. Vankov: J. Phys. G, 25, p. 1755 (1999).

    ADS  Google Scholar 

  • Anthony, P., et al.: PICRC, 4, p. 175 (1993).

    Google Scholar 

  • Bagge, E., et al.: Kosmische Strahlung, W. Heisenberg, ed., Springer Verlag, Berlin (1943).

    Google Scholar 

  • Barbarito, E., et al.: Nucl. Instr. Meth. A, 357, p. 588 (1995).

    ADS  Google Scholar 

  • Bell, J.S.: Nucl. Phys. B, 112, p. 461 (1976).

    ADS  Google Scholar 

  • Bergström, L., and A. Goobar: Cosmology and Particle Astrophysics, Springer, Berlin, 2nd ed. (2004).

    MATH  Google Scholar 

  • Bertou, X., et al.: Astropart. Phys. 14, p. 121 (2000).

    ADS  Google Scholar 

  • Bethe, H., and W. Heitler: Proc. Roy. Soc. A, 146, p. 83 (1934).

    ADS  Google Scholar 

  • Bhabha H.J., and W. Heitler: Proc. Roy. Soc. A, 159, p. 432 (1937).

    ADS  MATH  Google Scholar 

  • Bielawska, H., et al.: PICRC, 5, p. 399 (1987).

    Google Scholar 

  • Bourdeau, M.F., et al.: J. Phys. G, 1, p. 821 (1975a).

    ADS  Google Scholar 

  • Bourdeau, M.F., et al.: PICRC, 8, p. 2878 (1975b).

    ADS  Google Scholar 

  • Budini, P.: Vorträge über Kosmische Strahlung, 2. Auflage (in German), W. Heisenberg, ed., Springer, Berlin, p. 418 (1953).

    Google Scholar 

  • Budini, P., and G. Molière: Vorträge über Kosmische Strahlung, 2. Auflage (in German), W. Heisenberg, ed., Springer, Berlin, p. 438 (1953)

    Google Scholar 

  • Butcher, J.C., and H. Messel: Phys. Rev., 112, p. 2096 (1958).

    MathSciNet  ADS  Google Scholar 

  • Butcher, J.C., and H. Messel: Nucl. Phys. B, 20, pp. 15–128 (1960).

    MATH  Google Scholar 

  • Capdevielle, J.N., and J. Gawin: J. Phys. G, 8, p. 1317 (1982).

    ADS  Google Scholar 

  • Carlson, J.F., and J.R. Oppenheimer: Phys. Rev., 51, p. 220 (1937).

    ADS  Google Scholar 

  • Castellano, M., et al.: Nucl. Instr. Meth. A, 357, p. 231 (1995).

    ADS  Google Scholar 

  • Chudakov, A.E., et al.: PICRC, 8, p. 217 (1979).

    ADS  Google Scholar 

  • Cocconi, G.: Handbuch der Physik, S. Flügge, ed., Kosmische Strahlung, XLVI/I, Extensive Air Showers, Springer Verlag, Berlin, p. 222 (1961).

    Google Scholar 

  • Cudell, J.R., et al.: Phys. Rev. D, 61, p. 034019 (2000).

    ADS  Google Scholar 

  • Cudell, J.R., et al.: Phys. Rev. D, 65, p. 074024 (2002).

    ADS  Google Scholar 

  • Dedenko, L.G.: PICRC, 8, p. 466 (1977).

    ADS  Google Scholar 

  • Dedenko, L.G., and G.B. Khristiansen: PICRC, 8, p. 474 (1977).

    ADS  Google Scholar 

  • Dovzchenko, O.J., and A.A. Pomanski: J. Exptl. Theoret. Phys. (USSR), 45, p. 268 (1963).

    Google Scholar 

  • Dovzhenko, O.J., and A.A. Pomanski: Sov. Phys. JETP, 18, p. 187 (1964).

    Google Scholar 

  • Drescher, H.J., and G. Farrar: Phys. Rev. D, 67, p. 116001 (2003).

    ADS  Google Scholar 

  • Drescher, H.J.: Nucl. Phys. B (Proc. Suppl.), 151, p. 151 (2006).

    ADS  Google Scholar 

  • Eidelman, S., et al.: Particle Physics Booklet, Particle Data Group, Springer, Berlin (available from LBNL and CERN) (2004), and Phys. Lett. B, 592, p. 1 (2004).

    ADS  Google Scholar 

  • Erber, T.: Rev. Mod. Phys. 38, p. 626 (1966).

    MathSciNet  ADS  Google Scholar 

  • Euler, H., and H. Wergeland: Astrophys. Norw., 3, p. 163 (1940).

    ADS  Google Scholar 

  • Evans, R.D.: The Atomic Nucleus, McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  • Eyges, L., and S. Fernbach: Phys. Rev., 82, p. 23 (1951).

    ADS  Google Scholar 

  • Fokker, A.D.: Ann. Phys. 13, p. 810 (1914).

    Google Scholar 

  • Genannt, R., and H. Pilkuhn: PICRC, 4, p. 2434 (1973).

    ADS  Google Scholar 

  • Ginzburg, V.L., and I.M. Frank: Zh. Eksp. Teor. Fiz., 16, p. 15 (1946).

    Google Scholar 

  • Ginzburg, V.L., and S.I. Syrovatskii: The Origin of Cosmic Rays, Pergamon Press, New York (1964).

    Google Scholar 

  • Ginzburg, V.L. and S.I. Syrovatskii: The Origin of Cosmic Rays, Gordon and Breach, New York (1969).

    Google Scholar 

  • Ginzburg, V.L., and V.N. Tsytovich: Phys. Rep., 49, pp. 1–89, (1979).

    ADS  Google Scholar 

  • Ginzburg, V.L., and V.N. Tsytovich: Transition Radiation and Transition Scattering, Adam Hilger, Bristol (1990).

    Google Scholar 

  • Glasstetter, R., et al.: PICRC, 6, p. 293 (2005).

    Google Scholar 

  • Green, H.S., and H. Messel: Phys. Rev., 88, p. 331 (1952).

    ADS  MATH  Google Scholar 

  • Greisen, K.: Progress in Cosmic Ray Physics, North Holland, Co., Amsterdam, Vol. 3, p. 1 (1956).

    Google Scholar 

  • Greisen, K.: Annual Review of Nuclear Science, Annual Reviews, Inc., Palo Alto, California, USA, 10, p. 63 (1960).

    Google Scholar 

  • Greisen, K.: Phys. Rev. Lett., 16, p. 748 (1966).

    ADS  Google Scholar 

  • Guzhavin, V.V., and I.P. Ivanenko: Nuovo Cimento, Suppl. 8, p. 749 (1958).

    Google Scholar 

  • Halzen, F., and E. Zas: Nucl. Phys. B (Proc. Suppl.) 14A, p. 60 (1990).

    ADS  Google Scholar 

  • Heitler, W.: Quantum Theory of Radiation, Oxford University Press, London (1956).

    Google Scholar 

  • Hillas, A.M., and J. Lapikens: PICRC, 8, p. 460 (1977).

    ADS  Google Scholar 

  • Hillas, A.M.: PICRC, 1, p. 193 (1981).

    ADS  Google Scholar 

  • Homola, P., et al.: astro-ph/0311442 (2003).

    Google Scholar 

  • Homola, P., et al.: Nucl. Phys. B (Proc. Suppl.), 151, p. 119 (2006).

    ADS  Google Scholar 

  • Ivanenko, I.P., et al.: PICRC, 7, p. 292 (1977).

    ADS  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, John Wiley & Sons, New York (1999).

    MATH  Google Scholar 

  • Jauch, J.M., and F. Röhrlich: The Theory of Photons and Electrons, Addison-Wesley, Cambridge, MA (1955).

    Google Scholar 

  • Kamata, K., and J. Nishimura: Progr. Theor. Phys. Jpn., 6, Suppl., p. 93 (1958).

    ADS  Google Scholar 

  • Kamata, K., and J. Nishimura: J. Phys. Soc. Jpn., 15, p. 1565 (1960).

    ADS  Google Scholar 

  • Kasahara, K.: Phys. Rev. 31, D, p. 2737 (1985).

    ADS  Google Scholar 

  • Klein, O., and Y. Nishina: Zeitschr. f. Physik, 52, p. 853 (1929).

    ADS  Google Scholar 

  • Kuzmin, V.A., and G.T. Zatsepin: Can. J. Phys. 46, p. S617 (1968).

    ADS  Google Scholar 

  • Lagutin A.A., et al.: PICRC, 7, p. 7 (1979a).

    Google Scholar 

  • Lagutin A.A., et al.: PICRC, 7, p. 18 (1979b).

    Google Scholar 

  • Lagutin A.A., et al.: PICRC, 6, p. 260 (1981).

    Google Scholar 

  • Landau, L., and G. Rumer: Proc. Phys. Soc., 166, p. 531 (1938).

    Google Scholar 

  • Landau, L.D., and I.Ya. Pomeranchuk: Dokl. Akad. Nauk. SSSR, 92, p. 535 (1953a).

    MATH  Google Scholar 

  • Landau, L.D., and I.Ya. Pomeranchuk: Dokl. Akad. Nauk. SSSR, 92, p. 735 (1953b).

    MATH  Google Scholar 

  • Linsley, J.: PICRC, 7, p. 163 (1985).

    Google Scholar 

  • Manchester, R.N., and J.H. Taylor: Pulsars, Freeman Press, San Francisco (1977).

    Google Scholar 

  • Marmier, P., and E. Sheldon: Physics of Nuclei and Particles, Academic Press, New York, Vol. 1 (1969).

    Google Scholar 

  • McBreen, B., and C.J. Lambert: Phys. Rev. D, 24, p. 2536 (1981).

    ADS  Google Scholar 

  • McComb, T.J.L., et al.: J. Phys. G, 5, p. 1613 (1979).

    ADS  Google Scholar 

  • Messel, H., et al.: J. Phys. Soc. Jpn., 17, Suppl. A III, p. 444 (1962a).

    Google Scholar 

  • Messel, H., et al.: Nucl. Phys., 39, p. 1 (1962b).

    Google Scholar 

  • Messel, H., and D.F. Crawford: Electron-Photon Shower Distribution Function, Tables for Lead, Copper and Air Absorbers, Pergamon Press, Oxford (1970).

    Google Scholar 

  • Messel, H. and D.F. Crawford: Electron-Photon Shower Distribution Functions, Pergamon Press, Oxford (1977).

    Google Scholar 

  • Migdal, A.B.: Zu. Eksper. Teor. Fiz., 15, p. 313 (1945a).

    Google Scholar 

  • Migdal, A.B.: J. Phys. USSR, 9, p. 183 (1945b).

    Google Scholar 

  • Migdal, A.B.: Phys. Rev., 103, p. 1811 (1956).

    ADS  MATH  Google Scholar 

  • Migdal, A.B.: JETP 32, p. 633 (1957a) (in Russian).

    Google Scholar 

  • Migdal, A.B.: Sov. Phys. JETP 5, p. 527 (1957b).

    MathSciNet  MATH  Google Scholar 

  • Misaki, A.: Progr. Theor. Phys. Suppl., 32, p. 82 (1964).

    ADS  Google Scholar 

  • Misaki, A.: Nucl. Phys. B (Proc. Suppl.), 33AB, p. 192 (1993).

    ADS  Google Scholar 

  • Molière, G.: Naturwissenschasten, 30, p. 87 (1942).

    ADS  MATH  Google Scholar 

  • Molière, G.: Kosmische Strahlung, W. Heisenberg, ed., Springer Verlag, Berlin (1943).

    Google Scholar 

  • Molière, G.: Cosmic Radiation, W. Heisenberg, ed., Dover Publications, New York, 1st ed., (1946).

    Google Scholar 

  • Molière, G.: Z. Naturforschung, 2a, p. 133 (1947).

    ADS  Google Scholar 

  • Molière, G.: Z. Naturforschung, 3a, p. 78 (1948a).

    ADS  Google Scholar 

  • Molière, G.: Zeitschr. f. Physik, 125, p. 250 (1948b).

    ADS  Google Scholar 

  • Molière, G.: Nuovo Cim., 6, Suppl., p. 374 (1949).

    Google Scholar 

  • Molière, G.: Phys. Rev., 77, p. 715 (1950).

    ADS  Google Scholar 

  • Molière, G.: Zeitschr. f. Naturforschung, 7a, p. 280 (1952).

    ADS  Google Scholar 

  • Molière, G.: Vorträge über Kosmische Strahlung, 2. Auflage (in German), W. Heisenberg, ed., Springer, Berlin, pp. 446, 524 (1953).

    Google Scholar 

  • Molière, G., and K. Ott: Vorträge über Kosmische Strahlung, 2. Auflage (in German), W. Heisenberg, ed., p. 412, Springer, Berlin (1953).

    Google Scholar 

  • Molière, G.: Phys. Rev. Lett., 93, p. 636 (1954).

    Google Scholar 

  • Nelson, W.R., et al.: The EGS4 Code System, Report No. SLAC-265, Stanford Linear Accelerator Center, Stanford, California (December 1985).

    Google Scholar 

  • Nigam, B.P., et al.: Phys. Rev., 115, p. 491 (1959).

    MathSciNet  ADS  MATH  Google Scholar 

  • Nikishov, A.I., and V.I. Ritus: Proc. FIAN 111, p. 3 (1979).

    Google Scholar 

  • Nishimura, J., and K. Kamata: Progr. Theor. Phys., 5, p. 899 (1950).

    ADS  Google Scholar 

  • Nishimura, J., and K. Kamata: Progr. Theor. Phys., 6, p. 262 (1951a).

    ADS  Google Scholar 

  • Nishimura, J., and K. Kamata: Progr. Theor. Phys., 6, p. 628 (1951b).

    ADS  Google Scholar 

  • Nishimura, J., and K. Kamata: Progr. Theor. Phys., 7, p. 185 (1952).

    MathSciNet  ADS  MATH  Google Scholar 

  • Nishimura, J., and K. Kamata: Progr. Theor. Phys., 11, p. 608 (1954).

    ADS  Google Scholar 

  • Nishimura, J.: Progr. Theor. Phys. Suppl., 32, p. 72 (1964).

    ADS  Google Scholar 

  • Nishimura, J.: Handbuch der Physik, S. Flügge, ed., 46/2, p. 1, Springer Verlag, Berlin (1967).

    Google Scholar 

  • Okamoto, M., and T. Shibata: NIM A, 257, p. 155 (1987).

    ADS  Google Scholar 

  • Pierog, T., et al.: Nucl. Phys. A, 715, p. 895 (2003).

    ADS  Google Scholar 

  • Pierog, T., et al.: Nucl. Phys. B (Proc. Suppl.), 151, pp. 159 (2006).

    ADS  Google Scholar 

  • Planck, M.: Berl. Ber., p. 324 (1917).

    Google Scholar 

  • Plyasheshnikov, A.V., et al.: PICRC, 7, p. 1 (1979a).

    Google Scholar 

  • Plyasheshnikov, A.V., et al.: PICRC, 7, p. 13 (1979b).

    Google Scholar 

  • Pomeranchuk, J.: Zu. Eksper. Teor. Fiz., 14, p. 1252 (1944a).

    Google Scholar 

  • Pomeranchuk, J.: J. Phys. USSR, 8, p. 17 (1944b).

    Google Scholar 

  • Procureur, J., et al.: PICRC, 8, p. 2878 (1975).

    ADS  Google Scholar 

  • Ramana-Murthy, P.V., and A.W. Wolfendale: Gamma Ray Astronomy, Cambridge University Press Cambridge, 2nd ed. (1993).

    Google Scholar 

  • Richards, J.A., Jr., and L.W. Nordheim: Phys. Rev., 74, p. 1106 (1948).

    ADS  MATH  Google Scholar 

  • Risse, M., et al.: Astropart. Phys. 21, p. 479 (2004).

    ADS  Google Scholar 

  • Risse, M., et al.: Czechoslovak J. Phys. 56, p. A327 (2006).

    ADS  Google Scholar 

  • Roberg, J., and L.W. Nordheim: Phys. Rev., 75, p. 444 (1949).

    ADS  MATH  Google Scholar 

  • Rossi, B., and K. Greisen: Rev. Mod. Phys. 13, p. 240 (1941).

    ADS  Google Scholar 

  • Rossi, B.: High Energy Particles, Englewood Cliffs, New Jersey (1952).

    Google Scholar 

  • Schiff, L.I.: Quantum Mechanics, McGraw Hill, New York (1949).

    Google Scholar 

  • Schönfelder, V., Ed.: The Universe in Gamma Rays, Springer Verlag, Berlin, Heidelberg, New York (2001).

    Google Scholar 

  • Scott, W.T.: Phys. Rev., 80, p. 611 (1950).

    ADS  MATH  Google Scholar 

  • Scott, W.T.: Phys. Rev., 82, p. 893 (1951).

    ADS  MATH  Google Scholar 

  • Scott, W.T.: Rev. Mod. Phys. 35, p. 231 (1963).

    ADS  Google Scholar 

  • Serber, R.: Phys. Rev., 54, p. 317 (1938).

    ADS  Google Scholar 

  • Snyder, H.S.: Phys. Rev., 53, p. 960 (1938).

    ADS  Google Scholar 

  • Snyder H.S.: Phys. Rev., 76, p. 1563 (1949).

    ADS  MATH  Google Scholar 

  • Snyder H.S., and W.T. Scott: Phys. Rev., 76, p. 220 (1949).

    ADS  MATH  Google Scholar 

  • Sokolov, A.A., and I.M. Ternov: Radiation form Relativistic Electrons, Springer Verlag, Berlin (1986).

    Google Scholar 

  • Stanev, T., and H.P. Vankov: Phys. Rev. D, 55, p. 1365 (1997).

    ADS  Google Scholar 

  • Stecker, F.W.: Cosmic Gamma Rays, NASA SP-249 US GPO, Washington, DC, USA (1971).

    Google Scholar 

  • Sternheimer, R.: Phys. Rev., 88, p. 851 (1952).

    ADS  Google Scholar 

  • Sternheimer, R.: Phys. Rev., 89, p. 1309 (1953), erratum.

    ADS  Google Scholar 

  • Sternheimer, R.: Phys. Rev., 93, p. 351 (1954a).

    ADS  Google Scholar 

  • Sternheimer, R.: Phys. Rev., 93, p. 1434 (1954b).

    ADS  Google Scholar 

  • Sternheimer, R.: Phys. Rev., 103, p. 511 (1956).

    ADS  Google Scholar 

  • Sternheimer, R.M., and R.F. Peierls: Phys. Rev. B, 3, p. 3681 (1971).

    ADS  Google Scholar 

  • Sternheimer, R.M., et al.: The Density Effect for the Ionization Loss of Charged Particles in Various Substances, At. Nucl. Data Tables, 30, p. 261 (1984). See also Groom, D.E., N.V. Mokhov, and S.I. Striganov, At. Nucl. Data Tables 78, p. 183 (2001) and Ivanov, D.Yu., et al.: Phys. Lett., B 442, p. 453 (1998) for corrections.

    ADS  Google Scholar 

  • Sturrock, P.A.: Astrophys. J., 164, p. 529 (1971).

    ADS  Google Scholar 

  • Tamm, Ig., and C. Belenky: J. Phys. USSR, 1, p. 177 (1939).

    Google Scholar 

  • Ter-Mikaelian, M.L.: High Energy Electromagnetic Processes in Condensed Media, Wiley, New York (1972).

    Google Scholar 

  • Tsai, Y.S.: Rev. Mod. Phys. 46, p. 815 (1974).

    ADS  Google Scholar 

  • Uchaikin, V.V.: PICRC, 7, p. 24 (1979).

    Google Scholar 

  • Vankov, H.P., et al.: Phys. Rev. D, 67, p. 043002 (2003).

    ADS  Google Scholar 

  • Weise, W.: Phys. Rep., 13, p. 53 (1974).

    ADS  Google Scholar 

  • Wheeler, J.A., and W.E. Lamb, Jr.: Phys. Rev., 55, p. 858 (1939).

    ADS  MATH  Google Scholar 

  • Zatsepin, G.T., and V.A. Kuzmin: JETP Lett., 4, p. 78 (1966).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K.F. Grieder .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grieder, P.K. (2010). Electromagnetic Interactions and Photon–Electron Cascades. In: Extensive Air Showers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76941-5_4

Download citation

Publish with us

Policies and ethics