Skip to main content

X-Ray Variability of AGN and Relationship to Galactic Black Hole Binary Systems

  • Chapter
  • First Online:
The Jet Paradigm

Part of the book series: Lecture Notes in Physics ((LNP,volume 794))

Abstract

Over the last 12 years, AGN monitoring by RXTE, has revolutionised our understanding of the X-ray variability of AGN, of the relationship between AGN and Galactic black hole X-ray binaries (BHBs) and hence of the accretion process itself, which fuels the emission in AGN and BHBs and is the major source of power in the universe. In this chapter I review our current understanding of these topics.

I begin by considering whether AGN and BHBs show the same X-ray spectral-timing “states” (e.g. low flux, hard spectrum or “hard” and high flux, soft spectrum or “soft”). Observational selection effects mean that most of the AGN which we have monitored will probably be “soft-state” objects, but AGN are found in the other BHB states, although possibly with different critical transition accretion rates.

I examine timescale scaling relationships between AGN and BHBs. I show that characteristic power spectral “bend” timescales, T B , scale approximately with black hole mass, M BH , but inversely with accretion rate E , (in units of the Eddington accretion rate), probably signifying that T B , arises at the inner edge of the accretion disc. The relationship T B M BH / E is a good fit, implying that no other potential variable, e.g. black hole spin, varies significantly. Lags between hard and soft X-ray bands as a function of Fourier timescale follow similar patterns in AGN and BHBs.

I show how our improved understanding of X-ray variability enables us to understand larger scale properties of AGN. For example, the width of the H β optical emission line, V, scales as T B 1/4, providing a natural explanation of the observed small black hole masses in Narrow Line Seyfert Galaxies; if M BH were large then, as T B M BH / E , we would require E > 1 to obtain narrow lines.

I note that the rms X-ray variability scales linearly with flux in both AGN and BHBs, indicating that the amplitude of the shorter timescale variations is modulated by that of the longer timescale variations, ruling out simple shot-noise variability models. Blazars follow approximately the same pattern. The variations may therefore arise in the accretion disc and propagate inwards until they hit, and modulate, the X-ray emission region which, in the case of blazars, lies in a relativistic jet.

Short timescale (weeks) optical variability arises from reprocessing of X-rays in the accretion disc, providing a diagnostic of X-ray source geometry. On longer timescales, variations in the disc accretion rate may dominate optical variations.

AGN X-ray monitoring has greatly increased our understanding of the accretion process and there is a strong case for continued monitoring with future observatories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Almaini, A. Lawrence, T. Shanks et al.: MNRAS, 315, 325 (2000)

    Article  ADS  Google Scholar 

  2. P. Arévalo, I.M. McHardy, D.P. Summons: MNRAS, 388, 211 (2008)

    Article  ADS  Google Scholar 

  3. P. Arévalo, P. Uttley: MNRAS, 367, 801 (2006)

    Article  ADS  Google Scholar 

  4. P. Arévalo, P. Uttley, S. Kaspi et al.: MNRAS, 389, 1479 (2008)

    Article  ADS  Google Scholar 

  5. M. Axelsson, L. Borgonovo, S. Larsson: A&A, 438, 999 (2005)

    Article  ADS  Google Scholar 

  6. T. Belloni, G. Hasinger: A&A ,227, L33 (1990)

    ADS  Google Scholar 

  7. T. Belloni, J. Homan, P. Casella et al.: A&A, 440, 207 (2005)

    Article  ADS  Google Scholar 

  8. M.C. Bentz, B.M. Peterson, R.W. Pogge et al.: ApJ, 644, 133 (2006)

    Article  ADS  Google Scholar 

  9. R.D. Blandford, A. Konigl: ApJ, 232, 34 (1979)

    Article  ADS  Google Scholar 

  10. E. Breedt, P. Arévalo, I.M. McHardy et al.: MNRAS, 394, 427 (2008)

    Article  ADS  Google Scholar 

  11. C. Cabanac, R.P. Fender, R.J.H. Dunn et al.: MNRAS, in press (arXiv:0904.0701) (2009)

    Google Scholar 

  12. E.M. Cackett, K. Horne: MNRAS, 365, 1180 (2006)

    Article  ADS  Google Scholar 

  13. R. Chatterjee, S.G. Jorstad, A.P. Marscher et al.: ApJ, 689, 79 (2008)

    Article  ADS  Google Scholar 

  14. E. Churazov, M. Gilfanov, M. Revnivtsev: MNRAS, 321, 759 (2001)

    Article  ADS  Google Scholar 

  15. W. Cui, W.A. Heindl, R.E. Rothschild et al.: ApJ, 474, L57 (1997)

    Article  ADS  Google Scholar 

  16. C. Done, M. Gierliński: MNRAS, 364, 208 (2005)

    Article  ADS  Google Scholar 

  17. C. Done, G.M. Madejski, R.F. Mushotzky et al.: ApJ, 400, 138 (1992)

    Article  ADS  Google Scholar 

  18. C. Done, M.J. Ward, A.C. Fabian et al.: MNRAS, 243, 713 (1990)

    ADS  Google Scholar 

  19. R. Edelson, K. Nandra: ApJ, 514, 682 (1999)

    Article  ADS  Google Scholar 

  20. A.A. Esin, R. Narayan, W. Cui et al.: ApJ, 505, 854 (1998)

    Article  ADS  Google Scholar 

  21. A.C. Fabian: ApS&S, 300, 97 (2005)

    ADS  Google Scholar 

  22. H. Falcke, E. Körding, S. Markoff: A&A, 414, 895 (2004)

    Article  ADS  Google Scholar 

  23. M. Gierliński, M. Middleton, M. Ward et al.: Nature, 455, 369 (2008)

    Article  ADS  Google Scholar 

  24. M. Gierliński, M. Nikołajuk, B. Czerny: MNRAS, 383, 741 (2008)

    Article  ADS  Google Scholar 

  25. A.R. Green, I.M. McHardy, H.J. Lehto: MNRAS, 265, 664 (1993)

    ADS  Google Scholar 

  26. Q. Gu, J. Melnick, R.C. Fernandes et al.: MNRAS, 366, 480 (2006)

    Article  ADS  Google Scholar 

  27. M. Guainazzi, F. Nicastro, F. Fiore et al.: MNRAS, 301, L1 (1998)

    Article  ADS  Google Scholar 

  28. K. Hayashida, S. Miyamoto, S. Kitamoto et al.: ApJ, 500, 642 (1998)

    Article  ADS  Google Scholar 

  29. A. Herrero, R.P. Kudritzki, R. Gabler et al.: A&A 297, 556 (1995)

    ADS  Google Scholar 

  30. E.G. Körding, R.P. Fender, S. Migliari: MNRAS, 369, 1451 (2006)

    Article  ADS  Google Scholar 

  31. E.G. Körding, S. Jester, R.P. Fender: MNRAS, 372, 1366 (2006)

    Article  ADS  Google Scholar 

  32. E.G. Körding, S. Migliari, R. Fender et al.: MNRAS, 380, 301 (2007)

    Article  ADS  Google Scholar 

  33. O. Kotov, E. Churazov, M. Gilfanov: MNRAS, 327, 799 (2001)

    Article  ADS  Google Scholar 

  34. A. Lawrence, M.G. Watson, K.A. Pounds et al.: Nature, 325, 694 (1987)

    Article  ADS  Google Scholar 

  35. H.J. Lehto: In: J. Hunt, B. Battrick (eds.), Two Topics in X-Ray Astronomy, Vol. 1, volume 296 of ESA Special Publication, pp. 499–503 (1989)

    Google Scholar 

  36. Y.E. Lyubarskii: MNRAS, 292, 679 (1997)

    ADS  Google Scholar 

  37. D. Maoz, R. Edelson, K. Nandra: AJ, 119, 119 (2000)

    Article  ADS  Google Scholar 

  38. D. Maoz, A. Markowitz, R. Edelson et al.: AJ, 124, 1988 (2002)

    Article  ADS  Google Scholar 

  39. S. Markoff, H. Falcke, R. Fender: A&A, 372, L25 (2001)

    Article  ADS  Google Scholar 

  40. A. Markowitz, R. Edelson, S. Vaughan et al.: ApJ, 593, 96 (2003)

    Article  ADS  Google Scholar 

  41. K.O. Mason, I.M. McHardy, M.J. Page et al.: ApJ, 580, L117 (2002)

    Article  ADS  Google Scholar 

  42. A. Merloni, S. Heinz, T. di Matteo: MNRAS, 345, 1057 (2003)

    Article  ADS  Google Scholar 

  43. S. Migliari, R.P. Fender, M. van der Klis: MNRAS, 363, 112 (2005)

    Article  ADS  Google Scholar 

  44. G. Miniutti, A.C. Fabian, R. Goyder et al.: MNRAS, 344, L22 (2003)

    Article  ADS  Google Scholar 

  45. I. McHardy, B. Czerny: Nature, 325, 696 (1987)

    Article  ADS  Google Scholar 

  46. I. McHardy, A. Lawson, A. Newsam et al.: MNRAS, 375, 1521 (2007)

    Article  ADS  Google Scholar 

  47. I.M. McHardy: Mem S. A. It., 59, 239 (1988)

    ADS  Google Scholar 

  48. I.M. McHardy: In: J. Hunt, B. Battrick (eds.), Two Topics in X-Ray Astronomy, vol. 1, volume 296 of ESA Special Publication, pp. 1111–1124, (1989)

    Google Scholar 

  49. I.M. McHardy, P. Arévalo, P. Uttley et al.: MNRAS, 382, 985 (2007)

    Article  ADS  Google Scholar 

  50. I.M. McHardy, K.F. Gunn, P. Uttley et al.: MNRAS, 359, 1469 (2005)

    Article  ADS  Google Scholar 

  51. I.M. McHardy, E. Koerding, C. Knigge et al.: Nature, 444. 730 (2006)

    Article  ADS  Google Scholar 

  52. I.M. McHardy, I.E. Papadakis, P. Uttley: In: The Active X-ray Sky: Results from BeppoSAX and RXTE, pp. 509–514 (1998)

    Google Scholar 

  53. I.M. McHardy, I.E. Papadakis, P. Uttley et al.: MNRAS, 348, 783 (2004)

    Article  ADS  Google Scholar 

  54. N.M. Nagar, E. Oliva, A. Marconi et al.: A&A, 391, L21 (2002)

    Article  ADS  Google Scholar 

  55. M. Nikołajuk, B. Czerny, J. Ziółkowski et al.: MNRAS, 370, 1534 (2006)

    Article  ADS  Google Scholar 

  56. M. Nikolajuk, I.E. Papadakis, B. Czerny: MNRAS, 350, L26 (2004)

    Article  ADS  Google Scholar 

  57. M.A. Nowak: MNRAS, 318, 361 (2000)

    Article  ADS  Google Scholar 

  58. M.A. Nowak, B.A. Vaughan, J. Wilms et al.: ApJ, 510, 874 (1999)

    Article  ADS  Google Scholar 

  59. I.E. Papadakis: MNRAS, 348, 207 (2004)

    Article  ADS  Google Scholar 

  60. I.E. Papadakis, W. Brinkmann, H. Negoro et al.: A&A, 382, L1 (2002)

    Article  ADS  Google Scholar 

  61. I.E. Papadakis, E. Chatzopoulos, D. Athanasiadis et al.: A&A, 487, 475 (2008)

    Article  ADS  Google Scholar 

  62. I.E. Papadakis, I.M. McHardy: MNRAS, 273, 923 (1995)

    ADS  Google Scholar 

  63. I.E. Papadakis, K. Nandra, D. Kazanas: ApJ, 554, L133 (2001)

    Article  ADS  Google Scholar 

  64. B.M. Peterson, L. Ferrarese, K.M. Gilbert et al.: ApJ, 613, 682 (2004)

    Article  ADS  Google Scholar 

  65. B.M. Peterson, I.M. McHardy, B.J. Wilkes et al.: ApJ, 542, 161 (2000)

    Article  ADS  Google Scholar 

  66. K. Pounds, R. Edelson, A. Markowitz et al.: ApJ, 550, L15 (2001)

    Article  ADS  Google Scholar 

  67. M.B. Priestley: Spectral Analysis and Time Series, Academic Press, London (1982)

    Google Scholar 

  68. R.A. Remillard, J.E. McClintock: ARA&A, 44, 49 (2006)

    Article  ADS  Google Scholar 

  69. S.G. Sergeev, V.T. Doroshenko, Y.V. Golubinskiy et al.: ApJ, 622, 129 (2005)

    Article  ADS  Google Scholar 

  70. A. Sokolov, A.P. Marscher, I.M. McHardy : ApJ, 613, 725 (2004)

    Article  ADS  Google Scholar 

  71. D.P. Summons, P. Arevalo, I.M. McHardy et al.: MNRAS, 378, 649 (2007)

    Article  ADS  Google Scholar 

  72. D.P. Summons: PhD Thesis, University of Southampton (2007)

    Google Scholar 

  73. J. Timmer, M. Koenig: A&A, 300, 707 (1995)

    ADS  Google Scholar 

  74. A. Treves, L. Maraschi, M. Abramowicz: PASP, 100, 427 (1988)

    Article  ADS  Google Scholar 

  75. S.P. Trudolyubov: ApJ, 558, 276 (2001)

    Article  ADS  Google Scholar 

  76. T.J. Turner, I.M. George, K. Nandra et al.: ApJ, 524, 667 (1999)

    Article  ADS  Google Scholar 

  77. P. Uttley, R. Edelson, I.M. McHardy et al.: ApJ, 584, L53 (2003)

    Article  ADS  Google Scholar 

  78. P. Uttley, I.M. McHardy, I.E. Papadakis et al.: MNRAS, 307, L6 (1999)

    Article  ADS  Google Scholar 

  79. P. Uttley, I.M. McHardy: MNRAS, 323, L26 (2001)

    Article  ADS  Google Scholar 

  80. P. Uttley, I.M. McHardy: MNRAS, 363, 586 (2005)

    ADS  Google Scholar 

  81. P. Uttley, I.M. McHardy, I.E. Papadakis: MNRAS, 332, 231 (2002)

    Article  ADS  Google Scholar 

  82. P. Uttley, I.M. McHardy, S. Vaughan: MNRAS, 359, 345 (2005)

    Article  ADS  Google Scholar 

  83. B.A. Vaughan, M.A. Nowak: ApJ, 474, L43 (1997)

    Article  ADS  Google Scholar 

  84. N.E. White, A.C. Fabian, R.F. Mushotzky: A&A, 133, L9 (1984)

    ADS  Google Scholar 

  85. J. Wilms, M.A. Nowak, K. Pottschmidt et al.: A&A, 447, 245 (2006)

    Article  ADS  Google Scholar 

  86. J. Ziółkowski: MNRAS, 358, 851 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. McHardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McHardy, I. (2010). X-Ray Variability of AGN and Relationship to Galactic Black Hole Binary Systems. In: Belloni, T. (eds) The Jet Paradigm. Lecture Notes in Physics, vol 794. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76937-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76937-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76936-1

  • Online ISBN: 978-3-540-76937-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics