Skip to main content

A Dual Phase Evolution Model of Adaptive Radiation in Landscapes

  • Conference paper
Progress in Artificial Life (ACAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4828))

Included in the following conference series:

Abstract

In this study, we describe an evolutionary mechanism – Dual Phase Evolution (DPE) – and argue that it plays a key role in the emergence of internal structure in complex adaptive systems (CAS). Our DPE theory proposes that CAS exhibit two well-defined phases – selection and variation – and that shifts from one phase to the other are triggered by external perturbations. We discuss empirical data which demonstrates that DPE processes play a prominent role in species evolution within landscapes and argue that processes governing a wide range of self-organising phenomena are similar in nature. In support, we present a simulation model of adaptive radiation in landscapes. In the model, organisms normally exist within a connected landscape in which selection maintains them in a stable state. Intermittent disturbances (such as fires, commentary impacts) flip the system into a disconnected phase, in which populations become fragmented, freeing up areas of empty space in which selection pressure lessens and genetic variation predominates. The simulation results show that the DPE mechanism may indeed facilitate the appearance of complex diversity in a landscape ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LiveGraph - a framework for real-time data visualisation, analysis and logging (accessed on 30.08.2007), http://www.live-graph.org

  2. Green, D.G., Newth, D., Kirley, M.G.: Connectivity and catastrophe - towards a general theory of evolution. In: Bedau, M., McCaskill, J.S., Packard, N.H., Rasmussen, S., McCaskill, J., Packard, N. (eds.) Artificial Life VII (2000)

    Google Scholar 

  3. Green, D.G., Sadedin, S.: Interactions matter- complexity in landscapes and ecosystems. Ecological Complexity 2, 117–130 (2005)

    Article  Google Scholar 

  4. Green, D.G., Leishman, T.G., Sadedin, S.: Dual phase evolution: a mechanism for self-organization in complex systems. InterJournal Complex Systems (2006)

    Google Scholar 

  5. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Perseus Books (1995)

    Google Scholar 

  6. Levin, S.A.: Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems 1, 431–436 (1998)

    Article  Google Scholar 

  7. Lenton, T.M., Van Oijen, M.: Gaia as a Complex Adaptive System. Philosophical Transactions of the Royal Society: Biological Sciences 357, 683–695 (2002)

    Article  Google Scholar 

  8. Watson, A.J., Lovelock, J.E.: Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B 35, 284–289 (1983)

    Article  Google Scholar 

  9. Weber, S.L.: On Homeostasis in Daisyworld. Climatic Change 48, 465–485 (2001)

    Article  Google Scholar 

  10. Gavrilets, S.: Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton / Oxford (2004)

    Google Scholar 

  11. Green, D.G.: Fire and Stability in the Postglacial Forests of Southwest Nova Scotia. Journal of Biogeography 9, 29–40 (1982)

    Article  Google Scholar 

  12. Bak, P.: How Nature Works: The Science of Self-Organized Criticality. Reprint edn. Springer-Verlag Telos (1999)

    Google Scholar 

  13. Bak, P., Tang, C., Weisenfeld, K.: Self-Organized Criticality. Physical Review A 38, 364–374 (1988)

    Article  MathSciNet  Google Scholar 

  14. Langton, C.G.: Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena 42, 13–37 (1990)

    Article  MathSciNet  Google Scholar 

  15. Langton, C.G.: Life at the Edge of Chaos. In: Artificial Life II, Addison-Wesley, Reading (1991)

    Google Scholar 

  16. Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 71, 4083 (1993)

    Article  Google Scholar 

  17. Eldredge, N., Gould, S.J.: Punctuated Equilibria: An Alternative to Phyletic Gradualism. Freeman Cooper, San Francisco (1972)

    Google Scholar 

  18. Newman, M.E.J.: A model of mass extinction. Journal of Theoretical Biology 189, 235–252 (1997)

    Article  Google Scholar 

  19. de Carvalho, J.X., Prado, C.P.C.: Self-Organized Criticality in the Olami-Feder-Christensen Model. Physical Review Letters 84, 4006 (2000)

    Article  Google Scholar 

  20. Sornette, D., Johansen, A., Dornic, I.: Mapping Self-Organized Criticality onto Criticality. Journal de Physique I 5, 325–335 (1995)

    Article  Google Scholar 

  21. Kinouchi, O., Prado, C.P.C.: Robustness of scale invariance in models with self-organized criticality. Physical Review E 59, 4964 (1999)

    Article  Google Scholar 

  22. Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V.: Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science 208, 1095 (1980)

    Article  Google Scholar 

  23. Kornfield, I., Smith, P.F.: African Cichild Fishes: Model Systems for Evolutionary Biology. Annual Review of Ecology and Systematics 31, 163–196 (2000)

    Article  Google Scholar 

  24. Sturmbauer, C., Meyer, A.: Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358, 578–581 (1992)

    Article  Google Scholar 

  25. Hewitt, G.M.: Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions: Biological Sciences 359, 183–195 (2004)

    Article  Google Scholar 

  26. Butlin, R.K., Walton, C., Monk, K.A., Bridle, J.R.: Biogeography of Sulawesi grasshoppers, genus Chitaura, using DNA sequence data. In: Biogeography and geological evolution of Southeast Asia, pp. 355–359. Backhuys Publishers, Leiden, The Netherlands (1998)

    Google Scholar 

  27. Cowling, S.A., Maslin, M.A., Sykes, M.T.: Paleovegetation Simulations of Lowland Amazonia and Implications for Neotropical Allopatry and Speciation. Quaternary Research 55, 140–149 (2001)

    Article  Google Scholar 

  28. Bennett, K.D.: Continuing the debate on the role of Quaternary environmental change for macroevolution. Philosophical Transactions: Biological Sciences 359, 295–303 (2004)

    Article  Google Scholar 

  29. Coope, G.R.: Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philosophical Transactions: Biological Sciences 359, 209–214 (2004)

    Article  Google Scholar 

  30. Gavrilets, S., Vose, A.: Dynamic patterns of adaptive radiation. Proceedings of the National Academy of Sciences USA 102, 18040–18045 (2005)

    Article  Google Scholar 

  31. Paperin, G., Green, D.G., Dorin, A.: Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. In: CMLS 2007. 2007 International Symposium on Computational Models for Life Science, Gold Coast, Australia (2007)

    Google Scholar 

  32. Russell, P.J.: Fundamentals of genetics. HarperCollinsCollege Publishers, New York (1994)

    Google Scholar 

  33. Green, D.G.: Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Plant Ecology 82, 139–153 (1989)

    Article  Google Scholar 

  34. Barton, N.H., Hewitt, G.M.: Analysis of hybrid zones. Annual Review of Ecology and Systematics 16, 113–148 (1985)

    Article  Google Scholar 

  35. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L.: Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science 310, 987–991 (2005)

    Article  Google Scholar 

  36. Purvis, A., Hector, A.: Getting the measure of biodiversity. Nature 405, 212–219 (2000)

    Article  Google Scholar 

  37. Rojas, M.G.S.: Measures of diversity: a comparison of spatial patterns in a marine fouling community. Marine Ecology, vol. Graduate Thesis. Göteborg University, Göteborg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcus Randall Hussein A. Abbass Janet Wiles

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paperin, G., Green, D., Sadedin, S., Leishman, T. (2007). A Dual Phase Evolution Model of Adaptive Radiation in Landscapes. In: Randall, M., Abbass, H.A., Wiles, J. (eds) Progress in Artificial Life. ACAL 2007. Lecture Notes in Computer Science(), vol 4828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76931-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76931-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76930-9

  • Online ISBN: 978-3-540-76931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics