Abstract
Even prior to content, the genre of a web document leads to a first coarse binary classification of the recall space in relevant and non-relevant documents. Thinking of a genre search engine, massive data will be available via explicit or implicit user feedback. These data can be used to improve and to customize the underlying classifiers. A taxonomy of user behaviors is applied to model different scenarios of information gain. Elements of such a learning interface, as for example the implications of the lingering time and the snippet genre recognition factor, are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Stubbe, A., Ringlstetter, C., Schulz, K.U.: Genre as noise: Noise in genre. International Journal on Document Analysis and Recognition (to appear, 2007)
Henzinger, M.: Search technologies for the internet. Science 317, 468–471 (2007)
Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web search engine query log. SIGIR Forum 33(1), 6–12 (1999)
Santini, M.: Common criteria for genre classification: Annotation and granularity. In: Workshop on Text-based Information Retrieval (TIR 2006), Riva del Garda, Italy (2006)
Joachims, T.: A statistical learning learning model of text classification for support vector machines. In: SIGIR 2001. Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 128–136. ACM Press, New York, NY, USA (2001)
Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines. In: ICML 2000: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 839–846. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stubbe, A., Ringlstetter, C., Goebel, R. (2007). Elements of a Learning Interface for Genre Qualified Search. In: Orgun, M.A., Thornton, J. (eds) AI 2007: Advances in Artificial Intelligence. AI 2007. Lecture Notes in Computer Science(), vol 4830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76928-6_94
Download citation
DOI: https://doi.org/10.1007/978-3-540-76928-6_94
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76926-2
Online ISBN: 978-3-540-76928-6
eBook Packages: Computer ScienceComputer Science (R0)