An Outlook on Semantic Business Process Mining and Monitoring

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4806)


Semantic Business Process Management (SBPM) has been proposed as an extension of BPM with Semantic Web and Semantic Web Services (SWS) technologies in order to increase and enhance the level of automation that can be achieved within the BPM life-cycle. In a nutshell, SBPM is based on the extensive and exhaustive conceptualization of the BPM domain so as to support reasoning during business processes modelling, composition, execution, and analysis, leading to important enhancements throughout the life-cycle of business processes. An important step of the BPM life-cycle is the analysis of the processes deployed in companies. This analysis provides feedback about how these processes are actually being executed (like common control-flow paths, performance measures, detection of bottlenecks, alert to approaching deadlines, auditing, etc). The use of semantic information can lead to dramatic enhancements in the state-of-the-art in analysis techniques. In this paper we present an outlook on the opportunities and challenges on semantic business process mining and monitoring, thus paving the way for the implementation of the next generation of BPM analysis tools.


Business Process Process Mining Business Intelligence Semantic Annotation Process Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    European Project SUPER - Semantics Utilised for Process Management withing and between Enterprises.
  2. 2.
    van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and Verification of Properties: An Approach Based on Temporal Logic. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., Alves de Medeiros, A.K., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters, A.J.M.M.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.) Application and Theory of Petri Nets and Other Models of Concurrency (ICATPN 2007). LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  5. 5.
    Benjamins, R.: Problem-solving methods for diagnosis and their role in knowledge acquisition. Int. Journal of Expert Systems: Research & Applications 8(2), 93–120 (1995)Google Scholar
  6. 6.
    Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Tanasescu, V., Pedrinaci, C., Norton, B.: IRS-III: A Broker for Semantic Web Services based Applications. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 201–214. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Casati, F., Shan, M.-C.: Semantic Analysis of Business Process Executions. In: Jensen, C.S., Jeffery, K.G., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Castellanos, M., Casati, F., Dayal, U., Shan, M.-C.: A Comprehensive and Automated Approach to Intelligent Business Processes Execution Analysis. Distributed and Parallel Databases 16(3), 239–273 (2004)CrossRefGoogle Scholar
  9. 9.
    Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Systems: Bridging People and Software through Process Technology. Wiley & Sons, Chichester (2005)Google Scholar
  10. 10.
    Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue, J.: Enabling Semantic Web Services: The Web Service Modeling Ontology. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.-C.: Business Process Intelligence. Computers in Industry 53(3), 321–343 (2004)CrossRefGoogle Scholar
  12. 12.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  13. 13.
    Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE Transactions on Software Engineering 26(10), 943–958 (2000)CrossRefGoogle Scholar
  14. 14.
    Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business process management: A vision towards using semantic web services for business process management. In: ICEBE, pp. 535–540 (2005)Google Scholar
  15. 15.
    Klein, M., Dellarocas, C.: A Knowledge-based Approach to Handling Exceptions inWorkflow Systems. Comput. Supported Coop. Work 9(3-4), 399–412 (2000)CrossRefGoogle Scholar
  16. 16.
    Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception Handling in Workflow Systems. Applied Intelligence 13(2), 125–147 (2000)CrossRefGoogle Scholar
  17. 17.
    O’Riain, S., Spyns, P.: Enhancing the Business Analysis Function with Semantics. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. LNCS, vol. 4275, pp. 818–835. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Pedrinaci, C., Domingue, J.: Towards an Ontology for Process Monitoring and Mining. In: Semantic Business Process and Product Lifecycle Management (SBPM 2007), Innsbruck, Austria (June 2007)Google Scholar
  19. 19.
    Schlegel, K., Hostmann, B., Bitterer, A.: Magic Quadrant for Business Intelligence Platforms, 1Q07. Gartner RAS Core Research Note G00145507, Gartner (January 2007)Google Scholar
  20. 20.
    Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van de Velde, W., Wielinga, B.: Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    Sell, D., Cabral, L., Motta, E., Domingue, J., Pacheco, R.: Adding Semantics to Business Intelligence. In: DEXA Workshops, pp. 543–547. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  22. 22.
    van der Aalst, W.M.P., Rosemann, M., Dumas, M.: Deadline-Based Escalation in Process-Aware Information Systems. Decision Support Systems 43(2), 492–511 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Eindhoven University of Technology, P.O. Box 513, 5600MB, EindhovenThe Netherlands
  2. 2.Knowledge Media Institute, The Open University, Milton KeynesUK

Personalised recommendations