Advertisement

Automated Trimmed Iterative Closest Point Algorithm

  • R. Synave
  • P. Desbarats
  • S. Gueorguieva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)

Abstract

A novel method for automatic registration based on Iterative Closest Point (ICP) approach is proposed. This method uses geometric bounding containers to evaluate the optimum overlap rate of the data and model point sets.

Keywords

laser scanner acquisition automatic regisration iterative closest point range image reconstruction robustness uncertain geometric feature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allard, T.T., Sitchon, M.L., Sawatzky, R., Hoppa, R.D.: Use of hand-held laser scanning and 3d printing for creation of a museum exhibit. In: 6th International Symposium on Virtual Reality, Archaelogy and Cultural Heritage (2005)Google Scholar
  2. 2.
    Allen, B., Curless, B., Popovic, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)CrossRefGoogle Scholar
  3. 3.
    Bernardini, F., Mittleman, J., Rushmeier, H.E., Silva, C.T., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)CrossRefGoogle Scholar
  4. 4.
    Bernardini, F., Rushmeier, H.E.: The 3d model acquisition pipeline. Comput. Graph. Forum 21(2), 149–172 (2002)CrossRefGoogle Scholar
  5. 5.
    Bernardini, F., Rushmeier, H.E., Martin, I.M., Mittleman, J., Taubin, G.: Building a digital model of michelangelo’s florentine pietà. IEEE Computer Graphics and Applications 22(1), 59–67 (2002)CrossRefGoogle Scholar
  6. 6.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  7. 7.
    Bispo, E.M., Fisher, R.B.: Free-form surface matching for surface inspection. In: IMA Conference on the Mathematics of Surfaces, pp. 119–136 (1994)Google Scholar
  8. 8.
    Chen, Y., Medioni, G.G.: Object modelling by registration of multiple range images. Image Vision Comput. 10(3), 145–155 (1992)CrossRefGoogle Scholar
  9. 9.
    Chetverikov, D., Stepanov, D., Krsek, P.: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image Vision Comput. 23(3), 299–309 (2005)CrossRefGoogle Scholar
  10. 10.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH 1996: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 303–312. ACM Press, New York (1996)CrossRefGoogle Scholar
  11. 11.
    Estépar, R.S.J., Brun, A., Westin, C.-F.: Robust generalized total least squares iterative closest point registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 234–241. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Symposium on Geometry Processing, pp. 197–206 (2005)Google Scholar
  13. 13.
    Godin, G., Laurendeau, D., Bergevin, R.: A method for the registration of attributed range images. In: 3DIM, pp. 179–186 (2001)Google Scholar
  14. 14.
    Horn, B.K.P.: Closed-form solution of absolute orentation using unit quaternions. Journal of Optical Society of America 4(4), 629–642 (1987)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jacq, J.J., Roux, C., Couture, C.: Segmentation morphologique géodésique de surfaces. application à la morphométrie interactive des surfaces articulaires en anthropologie. In: 17ème colloque GRETSI sur le Traitement du Signal et des Images ( September 1999)Google Scholar
  16. 16.
    Jaeggli, T., Koninckx, T.P., Van Gool, L.: Online 3d acquisition and model integrationGoogle Scholar
  17. 17.
    Levoy, M.: The digital michelangelo project. In: 3DIM, pp. 2–13 (1999)Google Scholar
  18. 18.
    Nehab, D., Rusinkiewicz, S., Davis, J., Ramamoorthi, R.: Efficiently combining positions and normals for precise 3d geometry. ACM Trans. Graph. 24(3), 536–543 (2005)CrossRefGoogle Scholar
  19. 19.
    Pauly, M., Mitra, N.J., Giesen, J., Gross, M.H., Guibas, L.J.: Example-based 3d scan completion. In: Symposium on Geometry Processing, pp. 23–32 (2005)Google Scholar
  20. 20.
    Pennec, X.: Registration of uncertain geometric features: Estimating the pose and its accuracy. In: Massachusetts Institute of Technology, AIM-1623, p. 20 (1998)Google Scholar
  21. 21.
    Pennec, X., Guttmann, C.R.G., Thirion, J.-P.: Feature-based registration of medical images: Estimation and validation of the pose accuracy. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1107–1114. Springer, Heidelberg (1998)Google Scholar
  22. 22.
    Pennec, X., Thirion, J.-P.: Validation of 3d registration methods based on points and frames. In: INRIA, RR 2470, p. 42 (1995)Google Scholar
  23. 23.
    Pulli, K.: Multiview registration for large data sets (1999)Google Scholar
  24. 24.
    Rusinkiewicz, S., Hall-Holt, O.A., Levoy, M.: Real-time 3d model acquisition. In: SIGGRAPH, pp. 438–446 (2002)Google Scholar
  25. 25.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: 3DIM, pp. 145–152 (2001)Google Scholar
  26. 26.
    Sharp, G., Lee, S., Wehe, D.: Icp registration using invariant features (2002)Google Scholar
  27. 27.
    Stoddart, A.J., Lemke, S., Hilton, A., Renn, T.: Estimating pose uncertainty for surface registration. In: BMVC (1996)Google Scholar
  28. 28.
    Dan Sunday. Bounding containers for polygons, polyhedra, and point sets (2d and 3d) (2000), http://geometryalgorithms.com
  29. 29.
    Trucco, E., Fusiello, A., Roberto, V.: Robust motion and correspondence of noisy 3-d point sets with missing data. Pattern Recognition Letters 20(9), 889–898 (1999)CrossRefGoogle Scholar
  30. 30.
    Tsakiri, M., Ioannidis, C., Carty, A.: Laser scanning issues for the geometrical recording of complex statue. In: Optical 3D Measurement Techniques VI, Zurich, pp. 214–222 (2003)Google Scholar
  31. 31.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH, pp. 311–318 (1994)Google Scholar
  32. 32.
    Valzano, V., Bandiera, A., Beraldin, J.A., Picard, M., El-Hakim, S., Godin, G., Paquet, E., Rioux, M.: Fusion of 3d information for efficient modeling of cultural heritage sites with objects. In: International Symposium: Cooperation to Save World’s Cultural Heritage (2005)Google Scholar
  33. 33.
    Varady, T., Martin, R.R., Cox, J.: Reverse engineering of geometric models - an introduction. Computer-Aided Design 29(4), 255–268 (1997)CrossRefGoogle Scholar
  34. 34.
    Yan, P., Bowyer, K.W.: A fast algorithm for icp-based 3d shape biometrics. In: AUTOID 2005: Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies, pp. 213–218. IEEE Computer Society, Washington, DC, USA (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • R. Synave
    • 1
  • P. Desbarats
    • 1
  • S. Gueorguieva
    • 1
  1. 1.LaBRI UMR 5800 CNRS / Université Bordeaux 1 

Personalised recommendations