Advertisement

Rule-Based Multiple Object Tracking for Traffic Surveillance Using Collaborative Background Extraction

  • Xiaoyuan Su
  • Taghi M. Khoshgoftaar
  • Xingquan Zhu
  • Andres Folleco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)

Abstract

In order to address the challenges of occlusions and background variations, we propose a novel and effective rule-based multiple object tracking system for traffic surveillance using a collaborative background extraction algorithm. The collaborative background extraction algorithm collaboratively extracts a background from multiple independent extractions to remove spurious background pixels. The rule-based strategies are applied for thresholding, outlier removal, object consolidation, separating neighboring objects, and shadow removal. Empirical results show that our multiple object tracking system is highly accurate for traffic surveillance under occlusion conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jung, Y.-K., Ho, Y.-S.: Multiple Object Tracking under Occlusion Conditions. In: Visual Communications and Image Processing 2000, Proceedings of SPIE, vol. 4067, pp. 1011–1020 (2000)Google Scholar
  2. 2.
    Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME–Journal of Basic Engineering 82(D), 35–45 (1960)Google Scholar
  3. 3.
    Weng, S.-K., Kuo, C.-M., Tu, S.-K.: Video object tracking using adaptive Kalman filter. Journal of Visual Communication and Image Representation 17, 1190–1208 (2006)CrossRefGoogle Scholar
  4. 4.
    Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.-J.: Particle filters for positioning, navigation, and tracking. IEEE Transactions on Signal Processing 50(2), 425–437 (2002)CrossRefGoogle Scholar
  5. 5.
    Stauffer, C., Grimson, W.E.L.: Adaptive Background Mixture Models for Real-Time Tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)Google Scholar
  6. 6.
    Kumar, P., Ranganath, S., Huang, W.: Queue based Fast Background Modelling and Fast Hysteresis Thresholding for Better Foreground Segmentation. In: Proceedings of the 4th International Conference on Information, Communications and Signal Processing and Pacific Rim Conference on Multimedia, vol. 2, pp. 743–747 (2003)Google Scholar
  7. 7.
    Bai, L., Tompkinson, W., Wang, Y.: Computer vision techniques for traffic flow computation. Pattern Analysis and Applications 7, 365–372 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Beleznai, C., Frühstück, B., Bischof, H.: Human Tracking by Fast Mean Shift Mode Seeking. Journal of Multimedia 1(1) (2006)Google Scholar
  9. 9.
    Yang, T., Pan, Q., Li, J.: Real-time multiple objects tracking with occlusion handling in dynamic scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 970–975 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xiaoyuan Su
    • 1
  • Taghi M. Khoshgoftaar
    • 1
  • Xingquan Zhu
    • 1
  • Andres Folleco
    • 1
  1. 1.Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431 

Personalised recommendations