Optical Flow and Total Least Squares Solution for Multi-scale Data in an Over-Determined System

  • Homa Fashandi
  • Reza Fazel-Rezai
  • Stephen Pistorius
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)


In this paper, we introduce a new technique to estimate optical flow fields based on wavelet decomposition. In order to block error propagation between layers of multi-resolution image pyramid, we consider information of the all pyramid levels at once. We add a homogenous smoothness constraint to the system of optical flow constraints to obtain smooth motion fields. Since there are approximations on both sides of our over determined equation system, a total least square method is used as a minimization technique. The method was tested on several standard sequences in the field and megavoltage images taken by linear accelerator devices and showed promising results.


Optical Flow Wavelet Decomposition Coarse Level Total Little Square Smoothness Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  2. 2.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of Optical Flow Techniques. International Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  3. 3.
    Anandan, P.: A Computational Framework and an Algorithm for the Measurement of Visual Motion. International Journal of Computer Vision 2, 283–310 (1989)CrossRefGoogle Scholar
  4. 4.
    Gautama, T., Van Hulle, M.: A Phase-based Approach to the Estimation of the Optical Flow Field. IEEE Transactions on Neural Networks 13(5), 1127–1136 (2000)CrossRefGoogle Scholar
  5. 5.
    Simoncelli, E.P., Adelson, E.H.: Computing Optical flow Distributions Using Spatio-temporal Filters, Technical Report 165, M.I.T Media Lab Vision and Modeling (1991)Google Scholar
  6. 6.
    Bruhn, A., Weickert, J.: Lucas/Kanade Meets Horn/Schunck. International Journal of Computer Vision 16(3), 211–231 (2005)Google Scholar
  7. 7.
    Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proceeding Seven International Joint Conference on Artificial Intelligence, Vancouver, pp. 674–679 (1981)Google Scholar
  8. 8.
    Shi, Y.Q., Sun, H.: Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms and Standards. CRC Press, New York (2000)Google Scholar
  9. 9.
    Bruhn, A., Weickert, J.: A Confidence Measure for Variational Optic Flow Methods. In: Geometric Properties for Incomplete Data, pp. 283–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Weickert, J., Schnorr, C.: A Theoritical Framework for Convex Regularizers in PDE based Computation of Image Motion. International Journal of Computer Vision 45, 245–264 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Optical Flow Estimation Using Wavelet Motion Model. International Journal of Computer Vision 38(2), 129–152 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Liu, H., Chellappa, R., Rosenfeld, A.: Fast Two Frame Multi-scale Dense Optical Flow Estimation Using Discrete Wavelet Filters. Journal of Optical Society of America 20(8), 1505–1515 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Bernard Ch.: Wavelet and Ill-posed Problems: Optic Flow Estimation and Scattered Data Interpolation, PhD Thesis, Ecole Polytechnique (1999)Google Scholar
  14. 14.
    Chen, L.F., Liao, H.Y., Lin, J.C.: Wavelet Based Optical Flow Estimation. IEEE Transactions on Circuits and Systems for Video Technology 12(1), 1–12 (2002)CrossRefGoogle Scholar
  15. 15.
    Liu, H., Hong, T.H., Herman, M., Chellappa, R.: A General Motion Model and Spatio Temporal Filters for Computing Optical Flow. International Journal of Computer Vision 22(2), 141–172 (1997)CrossRefGoogle Scholar
  16. 16.
    Bab Hadiashar, A., Suter, D.: Robust Optical Flow Computation. International Journal of Computer Vision 29(1), 59–77 (1998)CrossRefGoogle Scholar
  17. 17.
    Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem Computational Aspects and Analysis, SIAM (1991) ISBN 0-89871-275-0Google Scholar
  18. 18.
    McCane, B.: On Benchmarking Optical Flow. Computer Vision and Image Understanding 84, 126–143 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Homa Fashandi
    • 1
  • Reza Fazel-Rezai
    • 1
  • Stephen Pistorius
    • 2
    • 3
  1. 1.Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6Canada
  2. 2.Departments of Radiology & Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2Canada
  3. 3.Medical Physics, CancerCare Manitoba, Winnipeg, MB, R3E 0V9Canada

Personalised recommendations