Geographic Image Retrieval Using Interest Point Descriptors

  • Shawn Newsam
  • Yang Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)


We investigate image retrieval using interest point descriptors. New geographic information systems such as Google Earth and Microsoft Virtual Earth are providing increased access to remote sensed imagery. Content-based access to this data would support a much richer interaction than is currently possible. Interest point descriptors have proven surprisingly effective for a range of computer vision problems. We investigate their application to performing similarity retrieval in a ground-truth dataset manually constructed from 1-m IKONOS satellite imagery. We compare results of using quantized versus full descriptors, Euclidean versus Mahalanobis distance measures, and methods for comparing the sets of descriptors associated with query and target images.


Image Retrieval Mahalanobis Distance Interest Point Query Image Scale Invariant Feature Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newsam, S., Yang, Y.: Comparing global and interest point descriptors for similarity retrieval in remote sensed imagery. In: ACM International Symposium on Advances in Geographic Information Systems (ACM GIS) (2007)Google Scholar
  2. 2.
    Ashley, J., Flickner, M., Hafner, J., Lee, D., Niblack, W., Petkovic, D.: The query by image content (QBIC) system. In: ACM SIGMOD International Conference on Management of Data (1995)Google Scholar
  3. 3.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. In: Penn State University Technical Report CSE 06-009 (2006)Google Scholar
  4. 4.
    Bretschneider, T., Cavet, R., Kao, O.: Retrieval of remotely sensed imagery using spectral information content. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp. 2253–2255 (2002)Google Scholar
  5. 5.
    Bretschneider, T., Kao, O.: A retrieval system for remotely sensed imagery. In: International Conference on Imaging Science, Systems, and Technology, vol. 2, pp. 439–445 (2002)Google Scholar
  6. 6.
    Ma, A., Sethi, I.K.: Local shape association based retrieval of infrared satellite images. In: IEEE International Symposium on Multimedia (2005)Google Scholar
  7. 7.
    Li, Y., Bretschneider, T.: Semantics-based satellite image retrieval using low-level features. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, vol. 7, pp. 4406–4409 (2004)Google Scholar
  8. 8.
    Hongyu, Y., Bicheng, L., Wen, C.: Remote sensing imagery retrieval based-on Gabor texture feature classification. In: International Conference on Signal Processing, pp. 733–736 (2004)Google Scholar
  9. 9.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. on Pattern Analysis and Machine Intelligence 18, 837–842 (1996)CrossRefGoogle Scholar
  10. 10.
    Newsam, S., Wang, L., Bhagavathy, S., Manjunath, B.S.: Using texture to analyze and manage large collections of remote sensed image and video data. Journal of Applied Optics: Information Processing 43, 210–217 (2004)Google Scholar
  11. 11.
    Newsam, S., Kamath, C.: Retrieval using texture features in high resolution multi-spectral satellite imagery. In: SPIE Defense and Security Symposium, Data Mining and Knowledge Discovery: Theory, Tools, and Technology VI (2004)Google Scholar
  12. 12.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65, 43–72 (2005)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005)CrossRefGoogle Scholar
  14. 14.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1470–1477 (2003)Google Scholar
  15. 15.
    Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 530–535 (1997)CrossRefGoogle Scholar
  16. 16.
    Wang, J., Zha, H., Cipolla, R.: Combining interest points and edges for content-based image retrieval. In: IEEE International Conference on Image Processing, pp. 1256–1259 (2005)Google Scholar
  17. 17.
    Wolf, C., Kropatsch, W., Bischof, H., Jolion, J.M.: Content based image retrieval using interest points and texture features. International Conference on Pattern Recognition 4, 4234 (2000)Google Scholar
  18. 18.
    Ledwich, L., Williams, S.: Reduced SIFT features for image retrieval and indoor localisation. In: Australasian Conference on Robotics and Automation (2004)Google Scholar
  19. 19.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  20. 20.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  21. 21.
    Kuhn, H.W.: The Hungarian Method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. The MIT Press, Cambridge (2001)Google Scholar
  23. 23.
    Manjunath, B.S., Salembier, P., Sikora, T. (eds.): Introduction to MPEG7: Multimedia Content Description Interface. John Wiley & Sons, Chichester (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Shawn Newsam
    • 1
  • Yang Yang
    • 1
  1. 1.Computer Science and Engineering, University of California, Merced CA 95344USA

Personalised recommendations