The Global-Local Transformation for Invariant Shape Representation

  • Konstantinos A. Raftopoulos
  • Stefanos D. Kollias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)


We present the GlobalLocal (GL) transformation for closed planar curves. With this new transformation we can represent shape by means of two dimensional manifolds (surfaces) embedded into the unit cube. We explore some useful properties of the transform space and we demonstrate its high expressive power. We justify the high potential of the resulting invariant shape representations in object recognition by providing experimental results using the Kimia silhouette database.


Global-Local transformation Shape representation Shape recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennet, J.R., McDonald, J.S.: On the measurement of curvature in a quantized environment. IEEE Transactions on Computers 24, 803–820 (1975)CrossRefGoogle Scholar
  2. 2.
    Chang, C.C., Hwang, S.M., Buehrer, D.J.: A shape recognition scheme based on relative distances of feature points from the centroid. Pattern Recognition 24, 1053–1063 (1991)CrossRefGoogle Scholar
  3. 3.
    Zahn, C., Roskies, R.: Fourier descriptors for plane closed curves. Computer Graphics and Image Processing 21, 269–281 (1972)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bengtsson, A., Eklundh, J.: Shape representation by multiscale contour approximation. IEEE Transactions on PAMI 13, 85–93 (1991)Google Scholar
  5. 5.
    Ikebe, Y., Miyamoto, S.: Shape design, representation, and restoration with splines. In: Fu, K., Kunii, T. (eds.) Picture Engineering. LNCS, pp. 75–95. Springer, Heidelberg (1982)Google Scholar
  6. 6.
    Witkin, A.P.: Scale-space filtering. In: Proceedings of the 8th Int’l Joint Conference on Artificial Intelligence, pp. 1019–1022 (1983)Google Scholar
  7. 7.
    Babaud, J., Witkin, A., Baudin, M., Duda, R.: Uniqueness of the gaussian kernel for scale-space filtering. IEEE Transactions on PAMI 8, 26–33 (1986)zbMATHGoogle Scholar
  8. 8.
    Asada, H., Brady, M.: The curvature primal sketch. IEEE Transactions on PAMI 8, 2–14 (1986)Google Scholar
  9. 9.
    Mokhtarian, F., Mackworth, A.K.: Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on PAMI 8, 34–43 (1986)Google Scholar
  10. 10.
    Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape representation for planar curves. IEEE Transactions on PAMI 14, 789–805 (1992)Google Scholar
  11. 11.
    Blum, H.: A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Forms. MIT Press, Cambridge (1967)Google Scholar
  12. 12.
    Blum, H.: Biological shape and visual science. Journal of Theoretical Biology 38, 205–287 (1973)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Maragos, P., Schafer, R.: Morphological skeleton representation and coding of binary images. IEEE Transactions on ASSP 34, 1228–1244 (1986)CrossRefGoogle Scholar
  14. 14.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21, 807–832 (2002)CrossRefGoogle Scholar
  15. 15.
    Giblin, P.J., Kimia, B.B.: On the intrinsic reconstruction of shape from its symmetries. IEEE Transactions on PAMI 25, 895–911 (2003)Google Scholar
  16. 16.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Transactions on PAMI 26, 550–571 (2004)Google Scholar
  17. 17.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Transactions on PAMI 25, 116–125 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Konstantinos A. Raftopoulos
    • 1
  • Stefanos D. Kollias
    • 1
  1. 1.Electrical Engineering Building - 1st Floor - Room 1.1.23, National Technical University of Athens, Iroon Polytexneiou 9, 15780 AthensGreece

Personalised recommendations