Multiple Combined Constraints for Optical Flow Estimation

  • Ahmed Fahad
  • Tim Morris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)


Several approaches to optical flow estimation use differential methods to model changes in image brightness over time. In computer vision it is often desirable to over constrain the problem to more precisely determine the solution and enforce robustness. In this paper, two new solutions for optical flow computation are proposed which are based on combining brightness and gradient constraints using more than one quadratic constraint embedded in a robust statistical function. Applying the same set of differential equations to different quadratic error functions produces different results. The two techniques combine the advantages of different constraints to achieve the best results. Experimental comparisons of estimation errors against those of well-known synthetic ground-truthed test sequences showed good qualitative performance.


Optical Flow Angular Error Quadratic Error Gradient Constancy Gradient Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Seventh International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  2. 2.
    Horn, B.K.P., Shunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  3. 3.
    Bruhn, A.e., Weickert, J.: Lucas/kanade meets horn/schunck: Combining local and global optic flow methods. International Journal of Computer Vision 16, 211–231 (2005)Google Scholar
  4. 4.
    Uras, S., Girosi, F., Verri, A., Torre, V.: A computational approach to motion perception. Biological Cybernetics 60, 79–87 (1988)CrossRefGoogle Scholar
  5. 5.
    Brox, T., Bruhn, A.e., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Rabcewicz, A.: Clg method for optical flow estimation based on gradient constancy assumption. In: International Conference on PDE-Based Image Processing and Related Inverse Problems, pp. 57–66. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision 67, 141–158 (2006)CrossRefGoogle Scholar
  8. 8.
    Odobez, J.M., Bouthemy, P.: Robust multiresolution estimation of parametric motion models. International Journal of Visual Communication and Image Representation 6, 348–365 (1995)CrossRefGoogle Scholar
  9. 9.
    Memin, E., Perez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Transactions on Image Processing 7, 703–719 (1998)CrossRefGoogle Scholar
  10. 10.
    Bab-Hadiashar, A., Suter, D.: Robust optic flow computation. International Journal of Computer Vision 29, 59–77 (1998)CrossRefGoogle Scholar
  11. 11.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63, 75–104 (1996)CrossRefGoogle Scholar
  12. 12.
    Xiao, J., Cheng, H., Sawhney, H., Rao, C., Isnardi, M.: Bilateral filtering-based optical flow estimation with occlusion detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 211–224. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  14. 14.
    Tistarelli, M.: Multiple constraints to compute optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 1243–1250 (1996)CrossRefGoogle Scholar
  15. 15.
    Bimbo, A.D., Nesi, P., Sanz, J.L.C.: Optical flow computation using extended constraints. IEEE Transactions on Image Processing 5, 720–732 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ahmed Fahad
    • 1
  • Tim Morris
    • 1
  1. 1.School of Computer Science, The University of Manchester, Manchester, M13 9PLUK

Personalised recommendations