Rotation-Invariant Texture Recognition

  • Javier A. Montoya-Zegarra
  • João P. Papa
  • Neucimar J. Leite
  • Ricardo da Silva Torres
  • Alexandre X. Falcão
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)


This paper proposes a new texture classification system, which is distinguished by: (1) a new rotation-invariant image descriptor based on Steerable Pyramid Decomposition, and (2) by a novel multi-class recognition method based on Optimum Path Forest. By combining the discriminating power of our image descriptor and classifier, our system uses small size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz dataset. High classification rates demonstrate the superiority of the proposed method.


Recognition Accuracy Optimum Path Minimum Span Tree Texture Image Image Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haykin, S.: Neural networks: a comprehensive foundation. Prentice-Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  2. 2.
    Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proc. 5th Workshop on Computational Learning Theory, pp. 144–152 (1992)Google Scholar
  3. 3.
    Papa, J.P.: Falcão, A.X., Miranda, P.A.V., Suzuki, C.T.N., Mascarenhas, N.D.A.: A new pattern classifier based on optimum path forest. Technical Report IC-07-13, Institute of Computing, State University of Campinas, Technical report (2007), available at
  4. 4.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991)CrossRefGoogle Scholar
  5. 5.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 40, 49–70 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bimbo, A.D.: Visual information retrieval. Morgan Kaufmann, San Francisco (1999)Google Scholar
  7. 7.
    Zhang, D., Wong, A., Indrawan, M., Lu, G.: Content based image retrieval using gabor texture features. In: PCM 2000: Proc. of 1st IEEE Pacific-Rim Conf. on Multimedia, pp. 392–395 (2000)Google Scholar
  8. 8.
    Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26, 19–29 (2004)CrossRefGoogle Scholar
  9. 9.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT (1990)Google Scholar
  10. 10.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watersheds, minimum spanning forests, and the drop of water principle, École Supérieure d’Ingénieurs (2007)Google Scholar
  11. 11.
    University of Southern California, S., Institute, I.P. (Rotated texture database) (Accessed on 1 March 1, 2007)
  12. 12.
    Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: A flexible architecture for multi-scale derivative computation. Proceedings of IEEE ICIP 13, 891–906 (1995)Google Scholar
  13. 13.
    Arivazhagan, S., Ganesan, L., Priyal, S.P.: Texture classification using gabor wavelets based rotation invariant features. Pattern Recognition Letters 27, 1976–1982 (2006)CrossRefGoogle Scholar
  14. 14.
    Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Transactions on Image Processing 11, 146–158 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines, Software (2001), available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Javier A. Montoya-Zegarra
    • 1
    • 2
  • João P. Papa
    • 2
  • Neucimar J. Leite
    • 2
  • Ricardo da Silva Torres
    • 2
  • Alexandre X. Falcão
    • 2
  1. 1.Computer Engineering Department, Faculty of Engineering, San Pablo Catholic University, Av. Salaverry 301, Vallecito, ArequipaPeru
  2. 2.Institute of Computing, State University of Campinas, Av. Albert Einstein 1216, Campinas, São PauloBrazil

Personalised recommendations