Skip to main content

Enabling Selective Flooding to Reduce P2P Traffic

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4803))

Abstract

We propose a P2P cooperation policy to increase the effectiveness of the flooding-based approach used to retrieve information over pure P2P networks. Flooding consists in propagating the original query from the source peer to “known” peers, and, in turn, to other peers, producing, in the general case, an exponential grow of the search traffic in the network. According to our policy, each peer involved in the flooding process propagates the query only toward peers hopefully capable of satisfying it. The crucial point is: how to detect such good candidates? Of course, “local” properties of similarity between peers not satisfying the transitivity property cannot be used to the above purpose, due to the necessity of propagating queries. Our solution relies on recovering some transitivity behavior in similarity-based P2P information retrieval approaches by considering neighborhood semantic properties. Experimental results show that the selective flooding so obtained is effective in the sense the traffic is drastically reduced w.r.t. the standard flooding (like GNUTELLA), with no loss of query success.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beneventano, D., Bergamaschi, S., Fergnani, A., Guerra, F., Vincini, M.: A peer-to-peer agent-based semantic search engine. In: Proceedings of the Eleventh Italian Symposium on Advanced Database Systems, pp. 367–378 (2003)

    Google Scholar 

  3. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like distributions: Evidence and implications. In: INFOCOM (1), pp. 126–134 (1999)

    Google Scholar 

  4. Buccafurri, F., Lax, G., Rosaci, D., Ursino, D.: A user behavior-based agent for improving web usage. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1168–1185. Springer, Heidelberg (2002)

    Google Scholar 

  5. Buccafurri, F., Rosaci, D., Sarnè, G.M.L., Palopoli, L.: Spy: A multi-agent model yielding semantic properties. In: IAT-2001. Proceedings of the The Second Asia-Pacific Conference on Intelligent Agent Technology, pp. 44–53 (2001)

    Google Scholar 

  6. Bunch, J., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Math. Comp. 28(125), 231–236 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castano, S., Ferrara, A., Montanelli, S.: The helios framework for peer-based knowledge sharing and evolution. In: Proceedings of the Eleventh Italian Symposium on Advanced Database Systems, pp. 347–358 (2003)

    Google Scholar 

  8. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progression. Journal of Symbolic Computation 9(3), 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: ICDCS 2002. Proceedings of the 22 nd International Conference on Distributed Computing Systems, p. 23. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  10. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for p2p systems. In: tech. rep., Computer Science Department, Stanford University (2002)

    Google Scholar 

  11. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, pp. 251–262. ACM Press, New York (1999)

    Google Scholar 

  12. Fensel, D.: Ontologies:A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Freenet. The freenet home page, http://www.freenetproject.org

  14. Gnutella, http://gnutella.wego.com

  15. Kalnis, P., Ng, W.S., Ooi, B.C., Tan, K.-L.: Answering similarity queries in peer-to-peer networks. Inf. Syst. 31(1), 57–72 (2006)

    Article  Google Scholar 

  16. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in p2p networks. In: WWW, pp. 640–651 (2003)

    Google Scholar 

  17. Krishnamurthy, B., Wang, J., Xie, Y.: Early measurements of a cluster-based architecture for p2p systems. In: Proceedings of the First ACM SIGCOMM Workshop on Internet Measurement, pp. 105–109. ACM Press, New York (2001)

    Chapter  Google Scholar 

  18. Maedche, A., Staab, S.: Measuring similarity between ontologies (2002)

    Google Scholar 

  19. Napster, http://www.napster.com

  20. Press, W.H., Teukolsky, S.A.: Multigrid methods for boundary value problems. Computers in Physics, 514–519 (1991)

    Google Scholar 

  21. Reif, J.H.: Efficient approximate solution of sparse linear systems. Computers Math. Applic. 36(9), 37–58 (1998)

    Article  MathSciNet  Google Scholar 

  22. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. IEEE/ACM Trans. Netw. 12(2), 219–232 (2004)

    Article  Google Scholar 

  23. Strassen, V.: Gaussian elimination is not optimal. Numerishe Mathematik 13, 354–356 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sun, Q., Daswani, N., Garcia-Molina, H.: Maximizing remote work in flooding-based peer-to-peer systems. Computer Networks 50(10), 1583–1598 (2006)

    Article  MATH  Google Scholar 

  25. Tamma, V., Wooldridge, M., Blacoe, I., Dickinson, I.: An ontology based approach to automated negotiation. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2002. LNCS (LNAI), vol. 2636, Springer, Heidelberg (2003)

    Google Scholar 

  26. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: ICDCS 2002. Proceedings of the 22 nd International Conference on Distributed Computing Systems, p. 5. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  27. Yang, B., Garcia-Molina, H.: Comparing hybrid peer-to-peer systems. The VLDB Journal, 561–570 (September 2001)

    Google Scholar 

  28. Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3, 177–200 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Exploiting locality for scalable information retrieval in peer-to-peer networks. Information Systems 30, 277–298 (2005)

    Article  Google Scholar 

  30. Zipf, G.K. (ed.): Human behaviour and the principle of least effort. Addison-Wesley, Reading, Mass (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert Meersman Zahir Tari

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buccafurri, F., Lax, G. (2007). Enabling Selective Flooding to Reduce P2P Traffic. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS. OTM 2007. Lecture Notes in Computer Science, vol 4803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76848-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76848-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76846-3

  • Online ISBN: 978-3-540-76848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics