Grid Problem Solving Environment for Stereology Based Modeling

  • Július Parulek
  • Marek Ciglan
  • Branislav Šimo
  • Miloš Šrámek
  • Ladislav Hluchý
  • Ivan Zahradník
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4804)

Abstract

The paper is concerned with the task of building problem solving environment (PSE) for stereology-based modeling applications. Such application involves tools for model creation, stereology-based model verification and model visualization. The application domain has complex and demanding technological requirements, including computationally intensive processing, operating platform heterogeneity and support for scientific collaboration. The natural solution is to take advantage of existing grid infrastructure to tap the computational resources required by the application domain. As the existing scientific grid production infrastructures do not satisfy all the requirements, we had to undertake the challenge of integrating multiple middleware solutions to enable their interoperability required by the PSE. Our results showcase the maturity of available grid solutions, as they can be adapted to support complex and platform dependent tasks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weibel, E., Bolender, R.: Stereological techniques for electron microscopic morphometry. In: Hayat, M.A., Van Co, N.R. (eds.) Principles and techniques of electron microscopy, New York, vol. 3, pp. 237–296 (1973)Google Scholar
  2. 2.
    Parulek, J., Šrámek, M., Novotová, M., Zahradník, I.: Computer modeling of muscle cells: Generation of complex muscle cell ultra-structure. Imaging & Microscopy 8(2), 58–59 (2006)CrossRefGoogle Scholar
  3. 3.
    Povray: Povray - the persistence of vision ray tracer (1996), http://www.povray.org/
  4. 4.
    Suzuki, R.: Povray 3.0 isosurface patch (1999), http://www.public.usit.net/rsuzuki/e/povray/iso/
  5. 5.
    Blinn, J.: A generalization of algebraic surface drawing. ACM Transactions on Graphics 1, 235–256 (1982)CrossRefGoogle Scholar
  6. 6.
    Bloomenthal, J., Bajaj, C., Blinn, J., Cani-Gascuel, M.P., Rockwood, A., Wyvill, B., Wyvill, G.: Introduction to Implicit Surfaces. Morgan Kaufman Publisher Inc., San Francisco, California (1997)MATHGoogle Scholar
  7. 7.
    Pasko, A.A., Adzhiev, V., Sourin, A., Savchenko, V.V.: Function representation in geometric modeling: concepts, implementation and applications. The Visual Computer 11(8), 429–446 (1995)Google Scholar
  8. 8.
    Pasko, A.A., Savchenko, V.V.: Blending operations for the functionally based constructive geometry. In: CSG 1994 Set-theoretic Solid Modeling: Techniques and Applications, INFORMATION GEOMETERS, Winchester, UK, pp. 151–161 (1994)Google Scholar
  9. 9.
    Bloomenthal, J.: Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5(4), 341–355 (1988)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Parulek, J., Novotný, P., Šrámek, M.: XISL—a development tool for construction of implicit surfaces. In: SCCG 2006. Proceedings of the 22nd spring conference on Computer graphics, Comenius University, Bratislava, pp. 128–135 (2006)Google Scholar
  11. 11.
    Adzhiev, V., Cartwright, R., Fausett, E., Ossipov, A., Pasko, A., Savchenko, V.: Hyperfun project: A framework for collaborative multidimensional f-rep modeling. In: Proc. of the Implicit Surfaces 1999 EUROGRAPHICS/ACM SIGGRAPH Workshop, pp. 59–69 (1999)Google Scholar
  12. 12.
    Wyvill, B., Guy, A., Galin, E.: Extending the csg tree (warping, blending and boolean operations in an implicit surface modeling system). Computer Graphics Forum 18(2), 149–158 (1999)CrossRefGoogle Scholar
  13. 13.
    EGEE: Enabling grids for e-science, http://www.eu-egee.org/
  14. 14.
    Kranzlmüller, D., Appleton, O.: Egee - status and future of the world’s largest multi-science grid infrastructure. In: Cracow 2005 Grid Workshop CGW 2005, Cracow, Poland (2005)Google Scholar
  15. 15.
    Simo, B., Ciglan, M., Maliska, M., Hluchy, L.: Medigrid infrastructure - services and portal. In: GCCP’2006. Proc. of the 2nd Int. Workshop on Grid Computing for Complex Problems, Bratislava, Slovakia, VEDA, pp. 1104–1112 (2007)Google Scholar
  16. 16.
    MEDIgRid: The medigrid project home page, http://www.eu-medigrid.org
  17. 17.
    Laure, E., Fisher, S.M., Frohner, A., Grandi, C., Kunszt, P., Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White, J., Barroso, M., Buncic, P., Hemmer, F., Meglio, A.D., Edlund, A.: Programming the grid with glite (Technical report)Google Scholar
  18. 18.
    Globus: The globus toolkit home page, http://www.globus.org/toolkit/
  19. 19.
    Czajkowski, K., Ferguson, D.F., Frey, J., Graham, S., Sedukhin, I., Snelling, D., Tuecke, S., Vambenepe, W.: The ws-resource framework (Technical report)Google Scholar
  20. 20.
    Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J., Kesselman, C., Meder, S., Pearlman, L., Tuecke, S.: Security for grid services. In: Twelfth International Symposium on High Performance Distributed Computing (HPDC-12), IEEE Press, Los Alamitos (2003)Google Scholar
  21. 21.
    Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Manohar, M., Patil, S., Pearlman, L.: A metadata catalog service for data intensive applications. In: Proceedings of Supercomputing 2003 (2003)Google Scholar
  22. 22.
    Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kesselman, C., Kunst, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K., Tierney, B.: Giggle: A framework for constructing sclable replica location services. In: Proceedings of Supercomputing 2002 (2002)Google Scholar
  23. 23.
    Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., Tuecke, S.: Gridftp: Protocol extensions to ftp for the grid, Technical report (2001), http://www-fp.mcs.anl.gov/dsl/gridftp-protocol-rfc-draft.pdf
  24. 24.
    GILDA: Gilda testbed home page, https://gilda.ct.infn.it/

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Július Parulek
    • 1
    • 4
  • Marek Ciglan
    • 2
  • Branislav Šimo
    • 2
  • Miloš Šrámek
    • 1
    • 3
  • Ladislav Hluchý
    • 2
  • Ivan Zahradník
    • 4
  1. 1.Faculty of Mathematics, Physics and Informatics, Comenius University, BratislavaSlovakia
  2. 2.Institute of Informatics, Slovak Academy of SciencesSlovakia
  3. 3.Austrian Academy of SciencesAustria
  4. 4.Institute of Molecular Physiology and Genetics, Slovak Academy of SciencesSlovakia

Personalised recommendations