Combining Virtual Reality and Functional Magnetic Resonance Imaging (fMRI): Problems and Solutions

  • Lydia Beck
  • Marc Wolter
  • Nan Mungard
  • Torsten Kuhlen
  • Walter Sturm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4799)


Combining Virtual Reality (VR) and functional magnetic resonance imaging (fMRI) offers great possibilities to researchers. Brain activation in VR can be studied and more realistic stimuli can be used in fMRI studies. Unfortunately, no standard solution exists for the combination of both methods. As part of an interdisciplinary project addressing the diagnostics and treatment of neglect, we created a neuroscientific VR-fMRI experiment. Our experiences are reported in this paper. The description of problems and our solution are intended as substantial facilitation and help for other researchers interested in creating VR-fMRI experiments.


Virtual Reality fMRI New Research Methodologies Human–Computer Interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morris, R., Mickel, S., Brooks, M., Swavely, S., Heilman, K.: Recovery from neglect. Journal of Clinical and Experimental Neuropsychology 7, 609 (1985)Google Scholar
  2. 2.
    Berti, A., Frassinetti, F.: When far becomes near: Remapping of space by tool use. Journal of Cognitive Neuroscience 12, 415–420 (2000)CrossRefGoogle Scholar
  3. 3.
    Ackroyd, K., Riddoch, M., Humphreys, G., Nightingale, S., Townsend, S.: Widening the sphere of influence: using a tool to extend extrapersonal visual space in a patient with severe neglect. Neurocase 8, 1–12 (2002)CrossRefGoogle Scholar
  4. 4.
    Loomis, J., Blaskovich, J., Beall, A.: Immersive Virtual Environment Technology as a Basic Research Tool in Psychology. Behavior Research Methods, Instruments, & Computers 31(4), 557–564 (1999)Google Scholar
  5. 5.
    Wolter, M., Armbruester, C., Valvoda, J.T., Kuhlen, T.: High ecological validity and accurate stimulus control in vr-based psychological experiments. In: EGVE 2007. Proceedings of Eurographics Symposium on Virtual Environments/Immersive Projection Technology Workshop, pp. 25–32 (2007)Google Scholar
  6. 6.
    Valvoda, J.T., Kuhlen, T., Bischof, C.: Interactive Virtual Humanoids for Virtual Environments. In: Short Paper Proceedings of the Eurographics Symposium on Virtual Environments, pp. 9–12 (2006)Google Scholar
  7. 7.
    Rizzo, A., Kim, G.J.: A SWOT Analysis of the Field of Virtual Reality Rehabilitation and Therapy. Presence - Teleoperators and Virtual Environment 14(2), 119–146 (2005)CrossRefGoogle Scholar
  8. 8.
    Kahlesz, F., Zachmann, G., Klein, R.: ’Visual-Fidelity’ Dataglove Calibration. In: CGI 2004. Proceedings of the Computer Graphics International, pp. 403–410 (2004)Google Scholar
  9. 9.
    Hoffman, H., Richards, T., Coda, B., Richards, A., Sharar, S.: The illusion of presence in immersive virtual reality during an fMRI brain scan. CyberPsychology & Behavior 6(2), 127–131 (2003)CrossRefGoogle Scholar
  10. 10.
    Hoffman, H., Richards, T., Coda, B., Bills, A., Blough, D., Richards, A., Sharar, S.: Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI. Neuroreport 15(8), 1245–1248 (2004)Google Scholar
  11. 11.
    Carvalho, K., Pearlson, G., Astur, R., Calhoun, V.: Simulated driving and brain imaging: combining behavior, brain activity, & virtual reality. CNS Spectrums 11(1), 52–62 (2006)Google Scholar
  12. 12.
    Pine, D., Grun, J., Maguire, E., Burgess, N., Zarahn, E., Koda, V., Fyer, A., Szeszko, P., Bilder, R.: Neurodevelopmental aspects of spatial navigation: a virtual reality fMRI study. NeuroImage 15(2), 396–406 (2002)CrossRefGoogle Scholar
  13. 13.
    Lee, J., Lim, Y., Wiederhold, B., Graham, S.: A functional magnetic resonance imaging (fMRI) study of cue-induced smoking craving in virtual environments. Applied Psychophysiology and Biofeedback 30(3), 195–204 (2005)CrossRefGoogle Scholar
  14. 14.
    You, S., Jang, S., Kim, Y., Kwon, Y., Barrow, I., Hallett, M.: Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Developmental Medicine & Child Neurology 47(9), 628–635 (2005)CrossRefGoogle Scholar
  15. 15.
    You, S., Jang, S., Kim, Y., Hallett, M., Ahn, S., Kwon, Y., Kim, J., Lee, M.: Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke 36(6), 1166–1171 (2005)CrossRefGoogle Scholar
  16. 16.
    Mraz, R., Hong, J., Quintin, G., Staines, W., McIlroy, W., Zakzanis, K., Graham, S.: A platform for combining virtual reality experiments with functional magnetic resonance imaging. Cyberpsychology & Behavior 6(4), 359–368 (2003)CrossRefGoogle Scholar
  17. 17.
    Baumann, S., Neff, C., Fetzick, S., Stangl, G., Basler, L., Vereneck, R., Schneider, W.: A virtual reality system for neurobehavioral and functional MRI studies. CyberPsychology & Behavior 6(3), 259–266 (2003)CrossRefGoogle Scholar
  18. 18.
    Riva, G., Gaggioli, A., Villani, D., Preziosa, A., Morganti, F., Corsi, R., Faletti, G., Vezzadini, L.: NeuroVR: An open-source virtual reality tool for research and therapy. Medicine Meets Virtual Reality 15, 394–399 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lydia Beck
    • 1
  • Marc Wolter
    • 2
  • Nan Mungard
    • 1
  • Torsten Kuhlen
    • 2
  • Walter Sturm
    • 1
  1. 1.University Hospital, RWTH Aachen University 
  2. 2.Virtual Reality Group, RWTH Aachen University 

Personalised recommendations