Skip to main content

A Note About the Traceability Properties of Linear Codes

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4817)

Abstract

We characterize the traceability properties of linear codes. It is well known that any code of length n and minimum distance d is a c-TA code if c 2 < n/(n − d). In this paper, we show that a less restrictive condition can be derived. In other words, there exists a value Z C , with n − d ≤ Z C  ≤ c(n − d), such that any linear code is c-TA if c < n/Z C . We also prove that in many cases this condition is also necessary. These results are applied to cyclic and Reed-Solomon codes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-76788-6_20
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-76788-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 480–491. Springer, Heidelberg (1994)

    Google Scholar 

  2. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans. Inform. Theory 46, 893–910 (2000)

    CrossRef  MATH  Google Scholar 

  3. Fernandez, M., Soriano, M.: Identification of traitors in algebraic-geometric traceability codes. IEEE Transactions on Signal Processing 52(10), 3073–3077 (2004)

    CrossRef  MathSciNet  Google Scholar 

  4. Jin, H., Blaum, M.: Combinatorial properties for traceability codes using error correcting codes. IEEE Transactions on Information Theory 53(2), 804–808 (2007)

    CrossRef  MathSciNet  Google Scholar 

  5. Lindkvist, T., Löfvenberg, J., Svanström, M.: A class of traceability codes. IEEE Transactions on Information Theory 48(7), 2094–2096 (2002)

    CrossRef  MATH  Google Scholar 

  6. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  7. Safavi-Naini, R., Wang, Y.: New results on frame-proof codes and traceability schemes. IEEE Transactions on Information Theory 47(7), 3029–3033 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Silverberg, A., Staddon, J., Walker, J.L.: Applications of list decoding to tracing traitors. IEEE Transactions on Information Theory 49(5), 1312–1318 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inform. Theory 47(3), 1042–1049 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. van Trung, T., Martirosyan, S.: On a class of traceability codes. Des. Codes Cryptography 31(2), 125–132 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernandez, M., Cotrina, J., Soriano, M., Domingo, N. (2007). A Note About the Traceability Properties of Linear Codes. In: Nam, KH., Rhee, G. (eds) Information Security and Cryptology - ICISC 2007. ICISC 2007. Lecture Notes in Computer Science, vol 4817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76788-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76788-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76787-9

  • Online ISBN: 978-3-540-76788-6

  • eBook Packages: Computer ScienceComputer Science (R0)