Skip to main content

Phenotypic Switching and Mutation in the Presence of a Biocide: No Replication of Phenotypic Variant

  • Chapter
  • 1500 Accesses

Part of the book series: Applied Optimization ((APOP,volume 102))

Abstract

A model for three competing bacterial strains that incorporates mutation and/or phenotypic switching is studied. We consider three different strains: wild, mutated and phenotypic bacteria generated by an inhibitor introduced in the environment. Our model considers that all new phenotypic bacteria are sensitive to the inhibitor and there is no phenotypic replication. Two steady state regimes are identified, finding that the strain surviving is the one arising from mutation of the wild strain. The model may also show three steady state regimes with the persistence of the three bacteria in the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balaban, N.Q., Merrin, J, et. al..: Bacterial Persistence as a Phenotypic Switch. Science 305, 1622–1625 (2004)

    Article  Google Scholar 

  2. Braselton, J.P., Waltman, P.: A competition model with dynamically allocated inhibitor production. Mathematical Biosciences 173, 55–84 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hsu, S.B., Waltman, P.: A survey of mathematical models of competition with an inhibitor. Mathematical Biosciences 187, 53–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hsu, S.B., Li, Y.S., Waltman, P.: Competition in the presence of a lethal external inhibitor. Mathematical Biosciences 167, 177–199 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hsu, S.B., Waltman, P.: Analysis of a model of two competitors in a chemostat with an external inhibitor. Journal of Applied Mathematics (SIAM) 52, 528–540 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hsu, S.B., Waltman, P.: Competition in the chemostat when one competitor produces a toxin. Japaniese Journal of Industrial Applied Mathematics 15, 471–490 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Khalil, H.: Nonlinear Systems. Prentice-Hall (1996)

    Google Scholar 

  8. Jones, D.A., Le, D., Kojouharov, H.V., Smith, H.L.: The Freter model: A simple model of biofilm formation. Journal of Mathematical Biology 472, 137–152 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leenheer, P., Li, B., Smith, H.L.: Competition in the chemostat: Some remarks. Canadian Applied Mathematics Quarterly 113, 229–248 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Leenheer, P., Smith, H.L.: Feedback control for the chemostat. Journal of Mathematical Biology 46, 48–70 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lenski, R.E., Hattingh, S.: Coexistence of two competitors one resource and one inhibitor: a chemostat model based on bacteria and antibiotics. Journal of Theoretical Biology 122, 83–93 (1986)

    Article  MathSciNet  Google Scholar 

  12. Levin, B.R.: Noninherited Resistance to Antibiotics. Science 305, 1578–1579 (2004)

    Article  Google Scholar 

  13. Li, B., Smith, H.L.: How Many Species Can Two Essential Resources Support?. Journal of Applied Mathematics (SIAM) 62, 336–366 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Markus, L.: Asymptotically autonomous differential systems. In: Lefschetz, S. (ed.) Contributions to the theory of Nonlinear Oscillations III. Annals of Mathematics Studies 36 Princeton University Press, Princeton, NJ, 17–29 (1956)

    Google Scholar 

  15. Miller, C., et. al.: SOS Response Induction by β-Lactams and bacterial defense against antibiotic Lethality. Science 305, 1629–1631 (2004)

    Article  Google Scholar 

  16. Smith, H. L., Waltman, P.: The theory of the chemostat. Dynamics of microbial competition. Cambdrige University Press (1995)

    Google Scholar 

  17. Stemmons, E.D., Smith, H.L.: Competition in a chemostat with wall attachment. Journal of Applied Mathematics (SIAM) 612, 567–595 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thieme, H.R.: Convergence results and a Poincaé-Bendixon trichotomy for asymtotically autonomous differential equations. Journal of Mathematical Biology 30, 755–763 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton, NJ (2003)

    MATH  Google Scholar 

  20. El ciclo del azufre, http://www.monografias.com/trabajos4/azufre/azufre.shtml.

    Google Scholar 

  21. Mecanismos de resistencia, www.virtual,unal.edu.co/cursos/odontologia/2005205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tapia-Santos, B., Velasco-Hernández, J.X. (2008). Phenotypic Switching and Mutation in the Presence of a Biocide: No Replication of Phenotypic Variant. In: Mondaini, R.P., Pardalos, P.M. (eds) Mathematical Modelling of Biosystems. Applied Optimization, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76784-8_7

Download citation

Publish with us

Policies and ethics