Skip to main content

Molecular Imaging of Gene Expression and Cell Trafficking

  • Chapter
Book cover Molecular Imaging
  • 4925 Accesses

Abstract

This chapter provides a brief description of the principles of gene therapy and the direct and indirect gene imaging approaches. Gene therapy is based on delivering a therapeutic gene to a specific organ or tissue using a viral or non-viral vector. The gene expression involves transcription of a gene into a messenger RNA (mRNA), which involves translation into a specific gene product, a protein. Non-invasive imaging gene expression is important for monitoring the location(s), magnitude, and time-variation of gene expression, and in measuring the efficacy of gene therapy. In an indirect gene imaging approach, the gene expression at the level of mRNA can be targeted using a radiolabeled antisense oligonucleotide (RASON) probe containing a complimentary sequence of mRNA to be imaged. The indirect gene imaging approach involves coupling the therapeutic gene (TG) to a reporter gene (RG) and then targeting the RG expression using a PET or SPECT reporter probe (RP). The potential clinical utility of radiolabeled RPs based on different gene products, such as enzymes, receptors, and membrane transporters, are discussed using examples from clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alauddin MM, Conti PS (1998) Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 25:175–180

    Article  PubMed  CAS  Google Scholar 

  • Al-Madhoun A, Tjarks W, Eriksson S (2004) The role of thymi-dine kinases in the activation of pyrimidine nucleoside analogues. Mini Rev Med Chem 4:341–350

    PubMed  CAS  Google Scholar 

  • Alrabiah FA, Sacks SL (1996) New anti-herpes virus agents: their targets and therapeutic potential. Drugs 52:17–32

    Article  PubMed  CAS  Google Scholar 

  • Altmann A, Kissel M, Zitzmann S, et al (2003) Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 44:973–980

    PubMed  CAS  Google Scholar 

  • Anton M, Wagner B, Haubner R, et al (2004) Use of the norepi-nephrine transporter as a reporter gene for noninvasive imaging of genetically modified cells. J Gene Med 6:119–126

    Article  PubMed  CAS  Google Scholar 

  • Barrio JR (2004) The molecular basis of disease. In: Phelps ME (ed) PET: Molecular Imaging and Its Biological Applications. Springer, New York

    Google Scholar 

  • Barton KN, Tyson D, Stricker H, et al (2003) GENIS:gene expression of sodium iodide symporter for noninvasive imaging of gene therapy vectors and quantification of gene expression in vivo. Mol Ther 8:508–518

    Article  PubMed  CAS  Google Scholar 

  • Blasberg R (2002) Imaging gene expression and endogenous molecular processes: molecular imaging. J Cereb Blood Flow Metab 22:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Boland A, Ricard M, Opolon P, et al (2000) Adenovirus-mediated transfer of the thyroid soium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 60:3484–3492

    PubMed  CAS  Google Scholar 

  • Brewster LP, Brey EM, Greisler HP (2006) Cardiovascular gene delivery: The good road is awaiting. Adv Drug Deliv Rev 58:604–629

    Article  PubMed  CAS  Google Scholar 

  • Buursma AR, Beerens AM, de Vries EF, et al (2005) The human norepinephrine transporter in combination with 11C-m-hydroxyephedrine as a reporter gene/reporter probe for PET of gene therapy. J Nucl Med 46:2068–2075

    PubMed  CAS  Google Scholar 

  • Che J, Doubrovin M, Serganova I, et al (2005) hNIS-IRES-eGFP dual reporter gene imaging. Mol Imaging 4:128–136

    PubMed  Google Scholar 

  • Chun HJ, Wilson KO, Huang M, et al (2007) Integration of genomics, proteomics, and imaging for cardiac stem cell therapy. Eur J Nucl Med Mol Imaging 34:S20–S26

    Article  PubMed  CAS  Google Scholar 

  • Dadachova E, Carrasco N (2004) The Na/I symporter (NIS): imaging and therapeutic applications. Semin Nucl Med 34:23–31

    Article  PubMed  Google Scholar 

  • Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379:458–460

    Article  PubMed  CAS  Google Scholar 

  • De A, Gambhir SS (2005) PET as a tool in multimodality imaging of gene expression and therapy. In: Bailey DL et al (eds) Positron Emission Tomography: Basic Sciences. Springer, London

    Google Scholar 

  • Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, et al (1994) Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 35:1054–1063

    PubMed  CAS  Google Scholar 

  • Ding YS, Fowler J (2005) New-generation radiotracers for nAChR and NET. Nucl Med Biol 32:707–718

    Article  PubMed  CAS  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J, et al (2004) Gene therapy clinical trials worldwide 1989–2004 — an overview. Gene Med 6:597–602

    Article  Google Scholar 

  • Gambhir SS (2004) Quantitative assay development for PET. In: Phelps ME (ed) PET: Molecular Imaging and Its Biological Applications. Springer, New York

    Google Scholar 

  • Gambhir SS, Barrio JR, Herschman HR, et al (1999a) Imaging gene expression: principles and assays. J Nucl Cardiol 6:219–233

    Article  CAS  Google Scholar 

  • Gambhir SS, Barrio JR, Phelps ME, et al (1999b) Imaging ade-noviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A 96:2333–2338

    Article  CAS  Google Scholar 

  • Gambhir SS, Herschman HR, Cherry SR, et al (2000a) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2:118–138

    Article  CAS  Google Scholar 

  • Gambhir SS, Bauer E, Black ME, et al (2000b) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with PET. Proc Natl Acad Sci U S A 97:2785–2790

    Article  CAS  Google Scholar 

  • Green LA, Yap CS, Nguyen K, et al (2002) Indirect monitoring of endogenous gene expression by positron emission tomography (PET) imaging of reporter gene expression in trans-genic mice. Mol Imaging Biol 4:71–81

    Article  PubMed  Google Scholar 

  • Haberkorn UA (2002) Imaging gene expression. In: Wahl RL, Buchanan JW (eds) Principles and Practice of Positron Emission Tomography. Williams & Wilkins, Philadelphia

    Google Scholar 

  • Haberkorn U, Oberdorfer F, Gebert J, et al (1996) Monitoring of gene therapy with cytosine deaminase: in vitro studies using 3H-5-fluorocytosine. J Nucl Med 37:87–94

    PubMed  CAS  Google Scholar 

  • Haberkorn U, Henze M, Altmann A, et al (2001) Transfer of the human NaI symporter gene enhances iodide uptake in hepa-toma cells. J Nucl Med 42:317–325

    PubMed  CAS  Google Scholar 

  • Hnatowich DI (2000) Antisense imaging: where are we now? Cancer Biother Radiopharm 15:447–457

    Article  PubMed  CAS  Google Scholar 

  • Inubushi M, Tamaki N (2007) Radionuclide reporter gene imaging for cardiac gene therapy. Eur J Nucl Med Mol Imaging 34:S27–S33

    Article  PubMed  CAS  Google Scholar 

  • Isner JM (2002) Myocardial gene therapy. Nature 415:234–239

    Article  PubMed  CAS  Google Scholar 

  • Jacobs A, Voges J, Reszka R, et al (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358:727–729

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AH, Winkler A, Castro MG, et al (2005) Human gene therapy and imaging in neurological diseases. Eur J Nucl Med Mol Imaging 32:S358–S383

    Google Scholar 

  • Jeffrey R. Petrella JR, Mattay VS, Doraiswamy PM (2008) Imaging genetics of brain longevity and mental wellness: the next frontier? Radiology 246:20–32

    Google Scholar 

  • Keller PM, Fyfe JA, Beauchamp L, et al (1981) Enzymatic phos-phorylation of acyclic nucleoside analogs and correlations with antiherpetic activities. Biochem Pharmacol 30:3071–3077

    Article  PubMed  CAS  Google Scholar 

  • Liang Q, Satyamurthy N, Barrio JR, et al (2001) Noninvasive, quantitative imaging in living animals of a mutant dop-amine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein PR, Castro MG (2004) Recent advances in the pharmacology of neurological gene therapy. Curr Opin Pharmacol 4(1):91–97

    Article  Google Scholar 

  • MacLaren DC, Gambhir SS, Satyamurthy N, et al (1999) Repetitive, noninvasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791

    Article  PubMed  CAS  Google Scholar 

  • Mandell RB, Mandell LZ, Link Jr CJ (1999) Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 59:661–668

    PubMed  CAS  Google Scholar 

  • Miller AD (1992) Human gene therapy comes of age. Nature 357:455–460

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa M, Beyer M, Wagner B, et al (2005) Cardiac reporter gene imaging using the human sodium/iodide symporter gene. Cardiovasc Res 65:195–202

    Article  PubMed  CAS  Google Scholar 

  • Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for prospective cancer control strategy. Cancer Res 46:5276–5281

    PubMed  CAS  Google Scholar 

  • Moroz M, Serganova I, Zanzonico P, et al (2007) Imaging hNET reporter gene expression with [124I]MIBG. J Nucl Med 48:827–836

    Article  PubMed  CAS  Google Scholar 

  • Mulligan RC (1993) The basic science of gene therapy. Science 260:926–932

    Article  PubMed  CAS  Google Scholar 

  • Niu G, Gaut AW, Ponto LL, et al (2004) Multimodality noninva-sive imaging of gene transfer using the human sodium iodide symporter. J Nucl Med 45:445–449

    PubMed  CAS  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human nora-drenaline transporter. Nature 350:350–354

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas I, Boán JF, Martí-Climent JM (2004) Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging. Mol Imaging Biol 6:225–238

    Article  PubMed  Google Scholar 

  • Peñuelas I, Haberkorn U, Yaghoubi S, et al (2005a) Gene therapy imaging in patients for oncological applications. Eur J Nucl Med Mol Imaging 32:S384–S403

    Article  Google Scholar 

  • Penuelas I, Mazzolini G, Boan JF, et al (2005b) Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128:1787–1795

    Article  CAS  Google Scholar 

  • Ponomarev V, Doubrovin M, Shavrin A, et al (2007) A novel human derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nuc Med 48:819–826

    Article  CAS  Google Scholar 

  • Rogers BE, McLean SF, Kirkman RL, et al (1999) In vivo localization of 111In-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 5:383–393

    PubMed  CAS  Google Scholar 

  • Rogers BE, Parry JJ, Andrews R, et al (2005) MicroPET imaging of gene transfer with a somatostatin receptor-based reporter gene and 94mTc-Demotate 1. J Nucl Med 46:1889–1897

    PubMed  CAS  Google Scholar 

  • Sangro B, Qian C, Ruiz J, et al (2002) Tracing transgene expression in cancer gene therapy: a requirement for rational progress in the field. Mol Imaging Biol 4:27–33

    Article  PubMed  Google Scholar 

  • Serganova I, Blasberg R (2005) Reporter gene imaging: potential impact on therapy. Nucl Med Biol 32:763–780

    Article  PubMed  CAS  Google Scholar 

  • Serganova I, Ponomarev V, Blasberg R (2007) Human reporter genes: potential use in clinical studies. Nucl Med Biol 34:791–807

    Article  PubMed  CAS  Google Scholar 

  • Tavitian B (2000) In vivo antisense imaging. Q J Nucl Med 44:236–255

    PubMed  CAS  Google Scholar 

  • Tjuvajev JG, Stockhammer G, Desai R, et al (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132

    PubMed  CAS  Google Scholar 

  • Tjuvajev JG, Finn R, Watanabe K, et al (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56:4087–4095

    PubMed  CAS  Google Scholar 

  • Tjuvajev JG, Avril N, Oku T, et al (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58:4333–4341

    PubMed  CAS  Google Scholar 

  • Tjuvajev J, Doubrovin M, Akhurst T, et al (2002) Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 43:1072–1083

    PubMed  Google Scholar 

  • Wu JC, la-Herttuala S (2005) Human gene therapy and imaging: cardiology. Eur J Nucl Med Mol Imaging 32:S346–S357

    Article  PubMed  Google Scholar 

  • Wu JC, Tseng JR, Gambhir SS (2004) Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11:491–505

    Article  PubMed  Google Scholar 

  • Yaghoubi, S.S.; Wu, L.; Liang, Q, et al (2001) Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther 8:1072–1080

    Article  PubMed  CAS  Google Scholar 

  • Yaghoubi SS, Barrio JR, Namavari M, et al (2005) Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12(3):329–339

    Article  PubMed  CAS  Google Scholar 

  • Zinn KR, Chaudhuri TR (2002) The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med Mol Imaging 29:388–399

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Molecular Imaging of Gene Expression and Cell Trafficking. In: Molecular Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76735-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76735-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76734-3

  • Online ISBN: 978-3-540-76735-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics