Skip to main content

Chemistry of Metal Radionuclides (Rb, Ga, In, Y, Cu and Tc)

  • Chapter
Molecular Imaging

Abstract

In the last four decades, a number of radiopharmaceuticals based on radiometals, such as 99mTc, 111In and 67Ga have been developed for both planar and SPECT imaging studies. Several positron emitting radiometals, specifically 64Cu, 68Ga and 89Zr have shown significant potential to develop molecular imaging probes based on PET. This chapter provides a broad overview of the production of radiometals and the importance of chelation chemistry in the development of metallic radiopharmaceuticals. Also, the advantages and disadvantages of various physico-chemical characteristics of radiometals such as half-life, specific activity, positron abundance and the energy of γ-photons are briefly explained. In addition, synthetic procedures involved in the preparation of 68Ga, 64Cu and 89Zr labeled molecular imaging probes based on peptides and proteins are reviewed. Finally, recent advances made in 99mTc chemistry and the synthetic approaches for the preparation of 99mTc labeled molecular imaging probes are briefly discussed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberto R, Schlibi R, Schubiger AP (1999) First application of fac-Q[99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: design, structure, and in vitro affi nity of a 5-QHT1A receptor ligand labeled with 99mTc. J Am Chem Soc 121:6076–6077

    Article  CAS  Google Scholar 

  • AL-QNahhas A, Win Z, Szyszko T, et al (2007) What can gal-Qlium-Q68 PET add to receptor and molecular imaging? Eur J Nucl Med Mol Imaging 34:1897–1901

    Article  Google Scholar 

  • Anderson CJ, Dehdashti F, Cutler, et al (2001) Copper-Q64-QTETA-Qoctreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 42:213–221

    PubMed  CAS  Google Scholar 

  • Anderson CJ, Green MA, Fujibayashi Y (2003) Chemistry of copper radionuclides and radiopharmaceutical products. In: Welch MJ, Redvanly CS (eds) Handbook of radiopharma-Qceuticals. Wiley, West Sussex, England

    Google Scholar 

  • Anderson CJ, Wadas TJ, Wong EH, et al (2008) Cross-Qbridged mac-Qrocyclic chelators for stable complexation of copper radionuclides for PET imaging. Q J Nucl Med Mol Imaging 52:185–192

    PubMed  CAS  Google Scholar 

  • Antunes P, Ginj M, Zhang H, et al (2007) Are radiogallium-Qlabelled DOTA-Qconjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993

    Article  PubMed  CAS  Google Scholar 

  • Azhdarinia A, Yang DJ, Chao C, et al (2007) Infrared-Qbased module for the synthesis of 68Ga-Qlabeled radiotracers. Nucl Med Biol 34(1):121–127

    Article  PubMed  CAS  Google Scholar 

  • Babich JW, Fischman AJ (1995) Effect of “co-Qligand” on the biodistribution of 99mTc-Qlabeled hydrazino nicotinic acid derivatized chemotactic peptides. Nucl Med Biol 22:25–30

    Article  PubMed  CAS  Google Scholar 

  • Banerjee SR, Maresca KP, Francesconi L, et al (2005) New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design. Nucl Med Biol 32:1–20

    Article  PubMed  CAS  Google Scholar 

  • Bartolo ND, Sargeson AM, Smith SV (2006) New 64Cu PET imaging agents for personalised medicine and drug development using the hexa-Qaza cage, SarAr. Org Biomol Chem 4:3350–3357

    Article  PubMed  CAS  Google Scholar 

  • Bases R, Brodie SS, Rubenfeld S (1963) Attempts at tumor localization using Cu-Q64-Qlabeled porphyrins. Cancer 11:259–263

    Article  Google Scholar 

  • Basken NA, Mathias CJ, Lipka AE, et al (2008) Species dependence of the [64Cu]Cu-QBis(thiosemicarbazone) radiopharma-Qceutical binding to serum albumins. Nucl Med Biol 35:281–286

    Article  PubMed  CAS  Google Scholar 

  • Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo tran-Qschelation of Copper-Q64 from TETA-Qoctreotide to superox-Qide dismutase in rat liver. Bioconjugate Chem 11:527–532

    Article  CAS  Google Scholar 

  • Baum R, Niesen A, Leonhardi J, et al (2005) Receptor PET/CT imaging of neuroendocrine tumors using the Ga-Q68 labelled, high affi nity somatostatin analogue DOTA-Q1-QNal3 octreotide (DOTA-QNOC): clinical results in 327 patients. Eur J Nucl Med Mol Imaging 32:S54–S55

    Google Scholar 

  • Baum RP, Prasad V, Hommann M, et al (2008) Receptor PET/ CT imaging of neuroendocrine tumors. Recent Res Cancer Res 170:225–242

    Article  CAS  Google Scholar 

  • Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23(8):957–980

    Article  PubMed  CAS  Google Scholar 

  • Börjesson PKE, Jauw YWS, Boellaard R, et al (2006) Performance of immuno-Qpositron emission tomography with zirconium-Q89-Qlabeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res 12:2133–2140

    Article  PubMed  Google Scholar 

  • Boswell CA, Sun X, Niu W, et al (2004) Comparative in vivo stability of copper-Q64 labeled cross-Qbridged and conventional tetraazamacrocyclic complexes. J Med Chem 47: 1465–1474

    Article  PubMed  CAS  Google Scholar 

  • Breeman WAP, Verbruggen AM (2007) The 68Ge/68Ga generator has high potential, but when can we use 68Ga-Qlabelled tracers in clinical routine? Eur J Nucl Med Mol Imaging 34:978–981

    Article  PubMed  Google Scholar 

  • Breeman WA, de Jong M, de Blais E, et al (2005) Radiolabelling DOTA-Qpeptides with 68Ga. Eur J Nucl Med Mol Imaging 32:478–485

    Article  PubMed  CAS  Google Scholar 

  • Brunner UK, Renn O, Ki M, et al (1995) Radiometals and their chelates. In: Wagner HN Jr, Szabo Z, Buchanan JW (eds) Principles of nuclear medicine. WB Saunders, Philadelphia

    Google Scholar 

  • Cai W, Ebrahimnejad A, Chen K, et al (2007a) Quantitative radioimmunoPET imaging of EphA2 in tumorbearing mice. Eur J Nucl Med Mol Imaging 34:850–858

    Article  CAS  Google Scholar 

  • Cai W, Chen K, He L, et al (2007b) Quantitative PET of EGFR expression in xenografts bearing mice using 64Cu-Qlabeled cetuximab, a chimeric anti-QEGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858

    Article  CAS  Google Scholar 

  • Chakrabarti A, Zhang K, Aruva MR, et al (2007) KRAS mRNA expression in human pancreatic cancer xenografts imaged externally with [64Cu]DO3A-Qpeptide nucleic acid-Qpeptide chimeras. Cancer Biol Ther 6:948–956

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Park R, Tohme M, et al (2004a) MicroPET and autora-Qdiographic imaging of breast cancer αVβ3-Qintegrin expression using 18F-Q and 64Cu-Qlabeled RGD peptide. Bioconjugate Chem 15(1):41–49

    Article  CAS  Google Scholar 

  • Chen X, Hou Y, Tohme M, et al (2004b) Pegylated Arg-QGly-QAsp peptide: 64Cu labeling and PET imaging of brain tumor αVβ3-Qintegrin expression. J Nucl Med 45:1776–1783

    CAS  Google Scholar 

  • Chong HS, Mhaske S, Lin M, et al (2007) Novel synthetic ligands for targeted PET imaging and radiotherapy of copper. Bioorg Med Chem Lett 17:6107–6110

    Article  PubMed  CAS  Google Scholar 

  • Cowley AR, Dilworth JR, Donnelly PS, et al (2007) Bifunctional chelators for copper radiopharmaceuticals: the synthesis of [Cu(ATSM)-Qamino acid] and [Cu(ATSM)-Qoctreotide] conjugates. Dalton Trans:209–217

    Google Scholar 

  • Decristoforo C, Knopp R, von Guggenberg E, et al (2007) A fully automated synthesis for the preparation of 68Ga-Qlabelled peptides. Nucl Med Commun 28:870–875

    Article  PubMed  CAS  Google Scholar 

  • Dejesus et al (1990) Production and purifi cation of 89Zr, a potential PET antibody label. Appl Radiat Isot 41(8):789–790

    Article  CAS  Google Scholar 

  • DeNardo GL, DeNardo SJ, Meares CF, et al (1991) Pharmacokinetics of Cu-Q67 conjugated Lym-Q1, a potential therapeutic radioimmnoconjugate, in mice and in patients with lymphoma. Antibod Immunoconjugate Radiopharm 4:777–785

    Google Scholar 

  • Deutsch E, Libson K, Jurisson S, et al (1983) Technetium chemistry and technetium radiopharmaceuticals. Prog Inorg Chem 30:75–139

    Article  CAS  Google Scholar 

  • Di Bartolo NM, Sargeson AM, Donlevy TM, Smith SV (2001) Synthesis of a new cage ligand, SarAr, and its complexation with selected transition metal ions for potential use in radio-Qimaging. J Chem Soc Dalton Trans 15:2303–2309

    Article  CAS  Google Scholar 

  • Dijkgraaf I, Boerman OC, Oyen WJ, et al (2007) Development and application of peptide-Qbased radiopharmaceuticals. Anticancer Agents Med Chem 7:543–551

    PubMed  CAS  Google Scholar 

  • Fichna J, Janecka A (2003) Synthesis of target-Qspecifi c radiola-Qbeled peptides for diagnostic imaging. Bioconjugate Chem 14:3–17

    Article  CAS  Google Scholar 

  • Forster GJ, Englebach M, Brockmann J, et al (2001) Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumors: comparison of 86Y-QDOTATOC and 111In-QDTPA-Qoctreotide. Eur J Nucl Med 28:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Fritzberg AR, Kasina S, Eshima D, et al (1986) Synthesis and biological evaluation of technetium-Q99m MAG3 as a hip-Qpuran replacement. J Nucl Med 27:111–116

    PubMed  CAS  Google Scholar 

  • Froidevaux S, Calame-QChriste M, Schuhmacher J, et al (2004) A gallium-Qlabeled DOTA-Qalphamelanocyte-Qstimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med 45:116–123

    PubMed  CAS  Google Scholar 

  • Fukumura T, Okada K, Suzuki H, et al (2006) An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-Qcontrolled preparation for clinical use. Nucl Med Biol 33:821–827

    Article  PubMed  CAS  Google Scholar 

  • Gabriel M, Decristoforo C, Kendler D, et al (2007) 68Ga-QDOTA-QTy r3-QOctreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    Article  PubMed  CAS  Google Scholar 

  • Garrison JC, Rold TL, Sieckman GL, et al (2007) In vivo evaluation and small-Qanimal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-Qby-Qside comparison of the CB-QTE2A and DOTA chelation systems. J Nucl Med 48(8):1327–1337

    Article  PubMed  CAS  Google Scholar 

  • Green MS, Welch MJ (1989) Gallium radiopharmaceutical chemistry. Int J Rad Appl Instrum B 16:435–448

    PubMed  CAS  Google Scholar 

  • Haddad F, Ferrer L, Guertin A, et al (2008) ARRONAX, a high-Qenergy and high-Qintensity cyclotron for nuclear medicine. Eur J Nucl Med Mol Imaging 35:1377–1387

    Article  PubMed  Google Scholar 

  • Haynes NG, Lacy GL, Nayak N, et al (2000) Performance of a 62Zn/62Cu generator in clinical trials of PET perfusion agent 62Cu-QPTSM. J Nucl Med 41:309–314

    PubMed  CAS  Google Scholar 

  • Hofmann M, Maecke H, Borner A, et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-QDOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757

    Article  PubMed  CAS  Google Scholar 

  • Koukouraki S, Strauss LG, Georgoulias V, et al (2006) Evaluation of the pharmacokinetics of 68Ga-QDOTATOC in patients with metastatic neuroendocrine tumors scheduled for 90Y-QDOTATOC therapy. Eur J Nucl Med Mol Imaging 33:460–466

    Article  PubMed  CAS  Google Scholar 

  • Kowalski J, Henze M, Schuhmacher J, et al (2003) Evaluation of positron emission tomography imaging using [68Ga]-QDOTA-QDPhe1-QTyr3-QOctreotide in comparison to [111In]-QDTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5:42–48

    Google Scholar 

  • Kukis DL, DeNardo SJ, DeNardo GL, et al (1998) Optimized conditions for chelation of yttrium-Q90-QDOTA immunoconju-Qgates. J Nucl Med 39:2105–2110

    PubMed  CAS  Google Scholar 

  • Kung HF, Kim H-QJ, Kung MP, et al (1996) Imaging of dopamine transporters in humans with technetium-Q99m-QTRODAT-Q1. Eur J Nucl Med 23:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Lankinen P, Mäkinen TJ, Pöyhönen TA, et al (2008) 68Ga-QDOTAVAP-QP1 PET imaging capable of demonstrating the phase of inflammation in healing bones and the progress of infection in osteomyelitic bones. Eur J Nucl Med Mol Imaging 35:352–364

    Article  PubMed  CAS  Google Scholar 

  • Lewis JS, Welch MJ (2001) PET imaging of hypoxia. Q J Nucl Med 45:183–188

    PubMed  CAS  Google Scholar 

  • Lewis JS, Lewis MR, Srinivasan A, et al (1999) Comparison of four 64Cu labeled somatostatin analogs in vitro and in a tumor bearing rat model: evaluation of new derivatives for PET and targeted therapy. J Med Chem 42:1341–1347

    Article  PubMed  CAS  Google Scholar 

  • Lewis JS, Welch MJ, Tang L (2008) Workshop on the production, application and clinical translation of “nonstandard” PET nuclides: a meeting report. Q J Nucl Med Mol Imaging 52(2):101–106

    PubMed  CAS  Google Scholar 

  • Li Z-QB, Chen K, Chen X (2008) 68Ga-Qlabeled multimeric RGD peptides for MicroPET imaging of integrin αvβ3 expression Eur J Nucl Med Mol Imaging 35:1100–1108

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Edwards DS (1999) 99mTc-Qlabeled small peptides as diagnostics radiopharmaceuticals. Chem Rev 99:2235–2268

    Article  PubMed  CAS  Google Scholar 

  • Loc'h C, Maziere B, Comar D (1980) A new generator for ionic gallium-Q68. J Nucl Med 21:171–173

    PubMed  Google Scholar 

  • Lövqvist A, Humm JL, Sheikh A, et al (2001) PET imaging of 86Y-Qlabeled anti-QLewis Y monoclonal antibodies in a nude mouse model: comparison between 86Y and 111In radiolabels. J Nucl Med 42:1281–1287

    PubMed  Google Scholar 

  • Lucignani G (2008) Labeling peptides with PET radiometals: vulcan's forge. Eur J Nucl Med Mol Imaging 35:209–215

    Article  PubMed  Google Scholar 

  • Maecke HR, Andre JP (2007) 68Ga-QPET radiopharmacy: a generator-Qbased alternative to 18Fradiopharmacy. Ernst Schering Res Found Workshop 62:215–242

    Article  PubMed  CAS  Google Scholar 

  • Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-Qlabeled peptides in tumor imaging. J Nucl Med 46:172S–178S

    PubMed  CAS  Google Scholar 

  • Mäkinen TJ, Lankinen P, Pöyhönen T, et al (2005) Comparison of 18F-QFDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging 32:1259–1268

    Article  PubMed  Google Scholar 

  • Mathias CJ, Welch MJ, Raichle ME, et al (1990) Evaluation of a potential generator-Qproduced PET tracer for cerebral extraction measurements and imaging with copper-Qlabeled-QPTSM. J Nucl Med 31:351–359

    PubMed  CAS  Google Scholar 

  • McCarthy DW, Shefer RE, Klinkowstein RE, et al (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol 24:35–43

    Article  PubMed  CAS  Google Scholar 

  • McCarthy DW, Bass LA, Cutler PD, et al (1999) High purity production and potential applications of copper-Q60 and cop-Qper-Q61. Nucl Med Biol 26:351–358

    Article  PubMed  CAS  Google Scholar 

  • Meegalla S, Plössl K, Kung M-QP, et al (1996) Tc-Q99m-Qlabeled tropanes as dopamine transporter imaging agents. Bioconj Chem 7:421–429

    Article  CAS  Google Scholar 

  • Meijs WE et al (1992) Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-Q89. Int J Rad Appl Instrum 43(12):1443–1447

    Article  CAS  Google Scholar 

  • Mindt TL, Struthers H, Brans L, et al (2006) “Click to Chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J Am Chem Soc 128:15096–15097

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Tolmachev V, Pehrson R, et al (2007) Synthetic affi-Qbody molecules: a novel class of affinity ligands for molecular imaging of HER2-Qexpressing malignant tumors. Cancer Res 67:2178–2186

    Article  PubMed  CAS  Google Scholar 

  • Parry JJ, Kelly TS, Andrews R, et al (2007) In vitro and in vivo evaluation of 64Cu-Qlabeled DOTA-Qlinker-Qbombesin analogues containing different amino acid linker moieties. Bioconjugate Chem 18:1110–1117

    Article  CAS  Google Scholar 

  • Perik PJ, Lub-QDe Hooge MN, et al (2006) Indium-Q111-Qlabeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-Qpositive metastatic breast cancer. J Clin Oncol 24:2276–2282

    Article  PubMed  CAS  Google Scholar 

  • Pettinato C, Sarnelli A, Di Donna M, et al (2008) 68Ga-QDOTANOC: biodistribution and dosimetry in patients affected by neu-Qroendocrine tumors. Eur J Nucl Med Mol Imaging 51:72–79

    Article  Google Scholar 

  • Prasanphanich AF, Nanda PK, Rold TL, et al (2007) [64Cu-QNOTA-Q8-QAoc-QBBN(7–14)NH2] targeting vector for positron-Qemission tomography imaging of gastrin-Qreleasing peptide receptorex-Qpressing tissues. Proc Natl Acad Sci U S A 104:12462–12467

    Article  PubMed  CAS  Google Scholar 

  • Pressly ED, Rossin R, Hagooly A, et al (2007) Structural effects on the biodistribution and positron emission tomography (PET) imaging of well-Qdefined 64Cu-Qlabeled nanoparticles comprised of amphiphilic lock graft copolymers. Biomacromolecules 8:3126–3134

    Article  PubMed  CAS  Google Scholar 

  • Ram S, Buchsbaum DJ (1994) A peptide-Qbased bifunctional chelating agent for 99mTc and 186Re labeling of monoclonal antibodies. Cancer 73(s3):769–773

    Article  PubMed  CAS  Google Scholar 

  • Raynaud C, Comar D, Dutheil M, et al (1973) Lung cancer diagnosis with Cu-Q67: preliminary results. J Nucl Med 14:947–950

    PubMed  CAS  Google Scholar 

  • Robinson GD Jr, Zielinski FW, Lee AW (1980) The 62Zn/62Cu generator: a convenient source of 62Cu for radiopharmaceuti-Qcals. Int J Appl Radiat Isot 31:111–116

    Article  PubMed  CAS  Google Scholar 

  • Robinson S, Julyan PJ, Hastings DL, et al (2004) Performance of a block detector PET scanner in imaging non-Qpure positron emitters—modeling and experimental validation with 124I. Phys Med Biol 49:5505

    Article  PubMed  CAS  Google Scholar 

  • Roivainen A, Tolvanen T, Salomäki S, et al (2004) 68Ga-Qlabeled oligonucleotides for in vivo imaging with PET. J Nucl Med 45:347–355

    PubMed  CAS  Google Scholar 

  • Rossin R, Pan D, Kai Q, et al (2005) 64Cu labeled folate conjugated shell cross-Qlinked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling and biologic evaluation. J Nucl Med 46:1210–1218

    PubMed  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendo-Qcrine tumors. Semin Nucl Med 36:228–247

    Article  PubMed  Google Scholar 

  • Sampath L, Kwon S, Ke S, et al (2007) Dual-Qlabeled trastu-Qzumab-Qbased imaging agent for the detection of human epidermal growth factor receptor 2 Overexpression in breast cancer. J Nucl Med 48:1501–1510

    Article  PubMed  CAS  Google Scholar 

  • Schuhmacher J, Maier-QBorst W (1981) A new 68Ge/68Ga radio-Qisotope generator system for production of 68Ga in dilute HCl. Int J Appl Radiat Isot 32:31–36

    Article  CAS  Google Scholar 

  • Sharma V, Prior JL, Belinsky MG, et al (2005) Characterization of a 67Ga/68Ga radiopharmaceutical for SPECT and PET of MDR1 P-Qglycoprotein transport activity in vivo: validation in multidrug-Qresistant tumors and at the blood-Qbrain barrier. J Nucl Med 46:354–364

    PubMed  CAS  Google Scholar 

  • Smith SV (2004) Molecular imaging with copper-Q64. J Inorg Biochem 98:1874–1901

    Article  PubMed  CAS  Google Scholar 

  • Smith SV (2007) Sarar technology for the application of cop-Qper-Q64 in biology and materials science. Q J Nucl Med Mol Imaging 51:1–10

    Google Scholar 

  • Smith-QJones PM, Solit D, Afroze F, et al (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-QFDG PET. J Nucl Med 47:793–796

    Google Scholar 

  • Sprague JE, Kitaura H, Anderson CJ, et al (2007) Noninvasive imaging of osteoclasts in parathyroid hormone-Qinduced oste-Qolysis using a 64Cu-Qlabeled RGD peptide. J Nucl Med 48:311–318

    PubMed  CAS  Google Scholar 

  • Tang L (2008) Radionuclide production and yields at Washington University School of Medicine. Q J Nucl Med Mol Imaging 52(2):121–133

    PubMed  CAS  Google Scholar 

  • Thakur ML, Aruva MR, Gariepy J, et al (2004) PET imaging of oncogene overexpression using 64Cu-Qvasoactive intestinal peptide (VIP) analog: comparison with 99mTc-QVIP analog. J Nucl Med 45:1381–1389

    PubMed  CAS  Google Scholar 

  • Vallabhajosula S, Harwig JF, Siemsen JK, et al (1980) Radiogallium localization in tumors: blood binding and transport and the role of transferrin. J Nucl Med 21:650–656

    PubMed  CAS  Google Scholar 

  • Velikyan I, Maecke H, Langstrom B (2008) Convenient preparation of 68Ga-Qbased PETradiopharmaceuticals at room temperature. Bioconjugate Chem 19(2):569–573

    Article  CAS  Google Scholar 

  • Verel I, Visser GWM, Boellaard R, et al (2003) 89Zr immuno-QPET: comprehensive procedures for the production of 89Zr labeled monoclonal antibodies. J Nucl Med 44(8):1271–1281

    PubMed  CAS  Google Scholar 

  • Verel I, Visser GWM, Boellaard R, et al (2003) Quantitative 89Zr-Qimmuno-QPET for in vivo scouting of 90Y-Qlabeled mono-Qclonalantibodies. J Nucl Med 44:1663–1670

    PubMed  CAS  Google Scholar 

  • Verel I, Visser GWM, Van Dongen GAMS (2005) The promise of immuno-QPET in radioimmunotherapy. J Nucl Med 46:164S–171S

    PubMed  Google Scholar 

  • Voss SD, Smith SV, Sargeson AM, et al (2007) Positron emission tomography (PET) imaging of neuroblastoma and mela-Qnoma with 64Cu-QSarAr immunoconjugates. PNAS 104: 17489–17493

    Article  PubMed  CAS  Google Scholar 

  • Wadas TJ, Wong EH, Weisman GR, et al (2007) Copper chela-Qtion chemistry and its role in copper radiopharmaceuticals. Curr Pharm Design 13:3–16

    Article  CAS  Google Scholar 

  • Waibei R, Alberto R, Willude J, et al (1999) Stable one-Qstep technetium-Q99m labeling of His-Qtagged recombinant proteins with a novel Tc(I)-Qcarbonyl complex. Nat Biotechnol 17:897–901

    Article  CAS  Google Scholar 

  • Weiner RE, Thakur ML (2003) Chemistry of gallium and indium radiopharmaceuticals. In: Welch MJ, Redvanly CS (eds) Handbook of radiopharmaceuticals. Wiley, West Sussex, England

    Google Scholar 

  • Wild D, Schmitt JS, Ginj M, et al (2003) DOTA-QNOC, a high-Qaffinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 30:1338–1347

    Article  PubMed  CAS  Google Scholar 

  • Wild D, Macke HR, Waser B, et al (2005) 68Ga-QDOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 724

    Google Scholar 

  • Williams HA, Robinson S, Julyan P, et al (2005) A comparison of PET imaging characteristics of various copper radioisotopes. Eur J Nucl Med Mol Imaging 32: 1473–1480

    Article  PubMed  Google Scholar 

  • Win Z, Al-QNahhas A, Rubello D, (2007) Somatostatin receptor PET imaging with Gallium-Q68 labeled peptides. Q J Nucl Med Mol Imaging 51:244–250

    PubMed  CAS  Google Scholar 

  • Yano J, Anger OH (1964) A gallium-Q68 positron cow for medical use. J Nucl Med 5:484–487

    PubMed  CAS  Google Scholar 

  • Yoo J, Tang L, Perkins TA, et al (2005) Preparation of high spe-Qcific activity 86Y using a small biomedical cyclotron. Nucl Med Biol 32:891–897

    Article  PubMed  CAS  Google Scholar 

  • Zalutsky MR, Lewis JS (2003) Radiolabeled antibodies for tumor imaging and therapy. In: Wagner HN Jr, Szabo Z, Buchanan JW (eds) Principles of nuclear medicine. WB Saunders, Philadelphia

    Google Scholar 

  • Zhang H, Schuhmacher J, Waser B, et al (2007) DOTA-QPESIN, a DOTA-Qconjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-Qpositive tumours. Eur J Nucl Med Mol Imaging 34(8):1198–1208

    Article  PubMed  Google Scholar 

  • Zhernosekov KP, Filosofov DV, Baum RP, et al (2007) Processing of generator-Qproduced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Chemistry of Metal Radionuclides (Rb, Ga, In, Y, Cu and Tc). In: Molecular Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76735-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76735-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76734-3

  • Online ISBN: 978-3-540-76735-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics