Restoration of Double-Sided Ancient Music Documents with Bleed-Through

  • Pedro Castro
  • R. J. Almeida
  • J. R. Caldas Pinto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


Access to collections of cultural heritage is increasingly becoming a topic of interest for institutions like libraries. With the easy access to information provided by technologies such as the Internet, new ways exist for consulting ancient documents without exposing them to more dangers of degradation. One of those types of documents is written ancient music. These documents suffer from multiple kinds of degradation, where bleed-through outstands as the most damaging. This paper proposes a new method based on the Takagi Sugeno fuzzy classification algorithm to classify the pixels as bleed-through, after performing a general background restoration. This method is applied to a set of double-sided ancient music documents, and the obtained results compared with methods present in the literature.


Ancient Music Restoration Image Processing Document Degradation Bleed-through Removal Registration Adaptive Thresholding Fuzzy Classification Clustering 


  1. 1.
    Baird, H.: The state of the art of document image degradation modeling (2000)Google Scholar
  2. 2.
    Drira, F.: Towards restoring historic documents degraded over time. In: Document Image Analysis for Libraries, pp. 350–357 (2006)Google Scholar
  3. 3.
    Castro, P., Pinto, J.R.C.: Methods for written ancient music restoration. Image Analysis and Recognition. In: Forth International Conference ICIAR (to be published, 2007)Google Scholar
  4. 4.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGraph- 2000 pp. 417–424 (2000)Google Scholar
  5. 5.
    Sharma, G.: Show-through cancellation in scans of duplex printed documents. IEEE Transactions on Image Processing 10(5), 736–754 (2001)CrossRefGoogle Scholar
  6. 6.
    Wang, Q., Tan, C.L.: Matching of double-sided document images to remove interference. In: CVPR, pp. 1084–1089. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  7. 7.
    Canny, J.: A computational approach to edge detection. In: RCV 1987, 184–203 (1987)Google Scholar
  8. 8.
    Dubois, E., Dano, P.: Joint compression and restoration of documents with bleed-through. In: IS&T Archiving, pp. 170–174 (2005)Google Scholar
  9. 9.
    Dubois, E., Pathak, A.: Reduction of bleed-through in scanned manuscript documents. In: PICS, pp. 177–180 (2001)Google Scholar
  10. 10.
    Brown: A survey of image registration techniques. CSURV: Computing Surveys 24 (1992)Google Scholar
  11. 11.
    Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recognition 33(2), 225–236 (2000)CrossRefGoogle Scholar
  12. 12.
    Pinto, J.R.C., Vieira, P., da Costa Sousa, J.M.: A new graph-like classification method applied to ancient handwritten musical symbols. IJDAR 6(1), 10–22 (2003)CrossRefGoogle Scholar
  13. 13.
    Setnes, M., Roubos, H.: GA fuzzy modeling and classification: Complexity and performance. IEEE Transactions on Fuzzy Systems 8(5), 509–522 (2000)CrossRefGoogle Scholar
  14. 14.
    Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. Proceedings of the IEEE 87(9), 1575–1600 (1999)CrossRefGoogle Scholar
  15. 15.
    Thawonmas, R., Abe, S.: Function approximation based on fuzzy rules extracted from partioned numerical data. IEEE Transactions on Systems, Man and Cybernetics, Part B 29(4), 525–534 (1999)CrossRefGoogle Scholar
  16. 16.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its aplication to modeling and control. IEEE Transactions on Systems, Man and Cybernetics 15(1), 116–132 (1985)zbMATHGoogle Scholar
  17. 17.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar
  18. 18.
    Junker, M., Dengel, A., Hoch, R.: On the evaluation of document analysis components by recall, precision, and accuracy. In: ICDAR, pp. 713–716 (1999)Google Scholar
  19. 19.
    Kubat, M., Holte, R., Matwin, S.: Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30, 195–215 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pedro Castro
    • 1
  • R. J. Almeida
    • 1
  • J. R. Caldas Pinto
    • 1
  1. 1.IDMEC/IST, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 LisboaPortugal

Personalised recommendations