Robust Local Localization of a Mobile Robot in Indoor Environments Using Virtual Corners

  • Carlos Lara
  • Leonardo Romero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


This paper deals with the problem of finding the movement of a mobile robot given two consecutive laser scans. The proposed method extracts a line map from the sequence of points in each laser scan, using a probabilistic approach, and then computes virtual corners between two lines in the same line map. The movement of the robot is estimated from correspondences of virtual corners between the two line maps. The combination of the probabilistic approach to find lines and the reduced number of virtual corners are the key ideas to get a simple, fast, robust to outliers, and reliable method to solve the local localization problem.


Mobile Robotics Local Localization Line Based Map 


  1. 1.
    Amigoni, F., Gasparini, S., Gini, M.: Building segment-based maps without pose information. Proceedings of the IEEE 94(7), 1340–1359 (2006)CrossRefGoogle Scholar
  2. 2.
    Besl, P.J., Mckay, N.D.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Borges, G.A., Aldon, M.-J.: Line extraction in 2d range images for mobile robotics. J. Intell. Robotics Syst. 40(3), 267–297 (2004)CrossRefGoogle Scholar
  4. 4.
    Einsele, T.: Localization in indoor environments using a panoramic laser range finder. PhD thesis, Technische Universit at Munchen (2001)Google Scholar
  5. 5.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Garulli, A., Giannitrapani, A., Rossi, A., Vicino, A.: Simultaneous localization and map building using linear features. In: Proceedings of the 2nd European Conference on Mobile Robots (2005)Google Scholar
  7. 7.
    Gros, P., Bournez, O., Boyer, E.: Using local planar geometric invariants to match and model images of line segments. Comput. Vis. Image Underst. 69(2), 135–155 (1998)CrossRefGoogle Scholar
  8. 8.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  9. 9.
    Hernandez-Alamilla, S., Morales, E.: Global localization of mobile robots for indoor environments using natural landmarks. In: IEEE Conference on Robotics Robotics, Automation and Mechatronics, pp. 1–6 (2006)Google Scholar
  10. 10.
    Huber, P.: Robust Statistics. Wiley, New York (1981)zbMATHGoogle Scholar
  11. 11.
    Lakmper, R., Latecki, L.J., Sun, X., Wolter, D.: Geometric robot mapping. In: DGCI, pp. 11–22 (2005)Google Scholar
  12. 12.
    Lara, C., Romero, L.: A robust approach to build 2d line maps from laser scans. Advances in Computer Science and Engineering. Research in Computing Science 19, 197–208 (2006)Google Scholar
  13. 13.
    Nguyen, V., Harati, A., Tomatis, N., Martinelli, A., Siegwart, R.: Orthogonal slam: a step toward lightweight indoor autonomous navigation. In: Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems (2006)Google Scholar
  14. 14.
    Sack, D., Burgard, W.: A comparison of methods for line extraction from range data. In: IAV (2003)Google Scholar
  15. 15.
    Veeck, M., Burgard, W.: Learning polyline maps from range scan data acquired with mobile robots. In: IROS (2004)Google Scholar
  16. 16.
    Wolter, D., Latecki, L.J.: Shape matching for robot mapping. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 693–702. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Zezhong, X., Jilin, L., Zhiyu, X.: Map building and localization using 2d range scanner. In: Proceedings 2003 IEEE International Symposium on Computational Intelligence in Mobile Robotics and Automation, pp. 848–853 (2003)Google Scholar
  18. 18.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carlos Lara
    • 1
  • Leonardo Romero
    • 1
  1. 1.Universidad Michoacana, Morelia Mich.Mexico

Personalised recommendations