Advertisement

Fuzzy Spatial Growing for Glioblastoma Multiforme Segmentation on Brain Magnetic Resonance Imaging

  • Alejandro Veloz
  • Steren Chabert
  • Rodrigo Salas
  • Antonio Orellana
  • Juan Vielma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

Image segmentation is a fundamental technique in medical applications. For example, the extraction of biometrical parameter of tumors is of paramount importance both for clinical practice and for clinical studies that evaluate new brain tumor therapies.

Tumor segmentation from brain Magnetic Resonance Images (MRI) is a difficult task due to strong signal heterogeneities and weak contrast at the boundary delimitation. In this work we propose a new framework to segment the Glioblastoma Multiforme (GBM) from brain MRI. The proposed algorithm was constructed based on two well known techniques: Region Growing and Fuzzy C-Means. Furthermore, it considers the intricate nature of the GBM in MRI and incorporates a fuzzy formulation of Region Growing with an automatic initialization of the seed points.

We report the performance results of our segmentation framework on brain MRI obtained from patients of the chilean Carlos Van Buren Hospital and we compare the results with Region Growing and the classic Fuzzy C-Means approaches.

Keywords

Fuzzy Spatial Growing (FSG) Magnetic Resonance Imaging (MRI) Glioblastoma Multiforme Fuzzy C-Means Region Growing Anisotropic Diffusion Filter Image Segmentation 

References

  1. 1.
    Gering, D., Nabavi, A., Kikinis, R., Hata, N., O’Donnell, L., Grimson, W., Jolesz, F., Black, P., Wells, W.: An integrated visualization system for surgical planning and guidance using image fusion and an open MR. Journal of Magnetic Resonance Imaging 13, 967–975 (2001)CrossRefGoogle Scholar
  2. 2.
    Bloch, I., Gousseau, Y., Matre, H., Matignon, D., Pesquet-Popescu, B., Schmitt, F., Sigelle, M., Tupin, F.: Le traitement des images, Polycopié du cours ANIM, Département TSI - Télécom-París (2004)Google Scholar
  3. 3.
    Feng, D.: Segmentation of soft tissues in medical images, Ph.D. thesis, National University of Singapore (2005)Google Scholar
  4. 4.
    Gaensler, E.H.: Neurorradiología fundamental, Marban (1998)Google Scholar
  5. 5.
    González, R., Woods, R.: Digital image processing, 2nd edn. Prentice Hall, Englewood Cliffs (2001)Google Scholar
  6. 6.
    Bonnie, N.J., Melanie, B.F., Carolyn, C.M., Qing-shou, H., Roger, S.D., Phil, J.G., Michael, E.B.: Brain tumor volume measurement: Comparison of manual and semiautomated methods. Radiology 212, 811–816 (1999)Google Scholar
  7. 7.
    Jahne, B., Haubecker, H.: Computer vision and applications. Academic Press, London (2000)Google Scholar
  8. 8.
    Kalousek, M., Birbamer, G., Kampfl, A., Aichner, F., Felber, S.: Principal advantages of CNS diagnostics by magnetic resonance imaging. Neurolog/’ia cro/’atica 40(2), 73–84 (1991)Google Scholar
  9. 9.
    Kaus, M.: Contributions to the automated segmentation of brain tumors in magnetic resonance images, Ph.D. thesis, Der Technischen Fakultat der Universitat Erlangen-Nurnberg (1999)Google Scholar
  10. 10.
    Kaye, A.H., Laws, E.R.: Brain tumors, Churchill Livingstone Edition (1995)Google Scholar
  11. 11.
    Moon, N., Bullitt, E., Van Leemput, K., Gerig, G.: Model-based brain and tumor segmentation. In: IEEE International Conference on Pattern Recognition, pp. 528–531. IEEE Press, Los Alamitos (2002)Google Scholar
  12. 12.
    Moraga, C., Salas, R.: A new aspect for the optimization of fuzzy if-then rules. In: Proceedings. 35th International Symposium on Multiple-Valued Logic, pp. 160–165. IEEE Press, Los Alamitos (2005)Google Scholar
  13. 13.
    Oppelt, A.: Imaging systems for medical diagnostics. Wiley, Chichester (2006)Google Scholar
  14. 14.
    Shen, S., Sandham, W., Granat, M., Sterr, A.: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Transaction on Information Technology in Biomedicine 9(3), 459–467 (2005)CrossRefGoogle Scholar
  15. 15.
    Veloz, A.: Esquema de trabajo para segmentar glioblastomas multiformes en MRI mediante técnicas de crecimiento de regiones y fuzzy c-means, Tesis de Grado de Ingeniería Biomédica, Universidad de Valparaíso (2007)Google Scholar
  16. 16.
    Xuan, J., Adah, T., Wang, Y.: Segmentation of magnetic resonance brain image: Integrating region growing and edge detection. In: IEEE Conference on Image Processing, pp. 544–547. IEEE Press, Los Alamitos (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alejandro Veloz
    • 1
  • Steren Chabert
    • 1
  • Rodrigo Salas
    • 1
  • Antonio Orellana
    • 2
  • Juan Vielma
    • 3
  1. 1.Departamento de Ingeniería Biomédica, Universidad de ValparaísoChile
  2. 2.Servicio de Neurocirugía, Hospital Carlos Van Buren, ValparaísoChile
  3. 3.Servicio de Imagenología Compleja, Hospital Carlos Van Buren, ValparaísoChile

Personalised recommendations