Unified Neural Network Based Pathologic Event Reconstruction Using Spatial Heart Model

  • Sándor M. Szilágyi
  • László Szilágyi
  • Attila Frigy
  • Levente K. Görög
  • Zoltán Benyó
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

This paper presents a new way to solve the inverse problem of electrocardiography in terms of heart model parameters. The developed event estimation and recognition method uses a unified neural network (UNN)-based optimization system to determine the most relevant heart model parameters. A UNN-based preliminary ECG analyzer system has been created to reduce the searching space of the optimization algorithm. The optimal model parameters were determined by a relation between objective function minimization and robustness of the solution. The final evaluation results, validated by physicians, were about 96% correct. Starting from the fact that input ECGs contained various malfunction cases, such as Wolff-Parkinson-White (WPW) syndrome, atrial and ventricular fibrillation, these results suggest this approach provides a robust inverse solution, circumventing most of the difficulties of the ECG inverse problem.

Keywords

Heart model unified neural network inverse ECG problem 

References

  1. 1.
    Cuppen, J.J.M., van Oosterom, A.: Model studies with inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng. 31, 652–659 (1984)CrossRefGoogle Scholar
  2. 2.
    Guanglin, L., Bin, H.: Localization of the site of origin of cardiac activation by means of a Heart-Model-Based electrocardiographic imaging approach. IEEE Trans. Biomed. Eng. 48, 660–669 (2001)CrossRefGoogle Scholar
  3. 3.
    Haider, A.W., Larson, M.G., Benjamin, E.J., Levy, D.: Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J. Am. Coll. Cardiol. 32, 1454–1459 (1998)CrossRefGoogle Scholar
  4. 4.
    Johnson, C.R., MacLeod, R.S.: Adaptive local regularization methds for the inverse ECG problem. Progr. Biophys. Mol. Biol. 69, 405–423 (1998)CrossRefGoogle Scholar
  5. 5.
    Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sörnmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47, 838–848 (2000)CrossRefGoogle Scholar
  6. 6.
    MacLeod, R.S., Brooks, D.H.: Recent progress in inverse problems in electrocardiology. IEEE EMBS Mag. 17(1), 73–83 (1998)CrossRefGoogle Scholar
  7. 7.
    Minami, K., Nakajima, H., Yoyoshima, T.: Real time discrimination of the ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans. Biomed. Eng. 46, 179–185 (1999)CrossRefGoogle Scholar
  8. 8.
    Mirvis, D.M.: Validation of body surface electrocardiographic mapping. In: Mirvis, D.M. (ed.) Body surface electrocardiographic mapping, pp. 63–74. Kluwer, Boston-Dordrecht-London (1988)Google Scholar
  9. 9.
    Moreau-Villéger, V., Delingette, H., Sermesant, M., Ashikaga, H., McVeigh, E., Ayache, N.: Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart. IEEE Trans. Biomed. Eng. 53, 1457–1466 (2006)CrossRefGoogle Scholar
  10. 10.
    Noble, D.: Modeling the heart. Phys. 19, 191–197 (2004)MathSciNetGoogle Scholar
  11. 11.
    Osowski, S., Hoai, L.T.: ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48, 1265–1271 (2001)CrossRefGoogle Scholar
  12. 12.
    Osowski, S., Hoai, L.T., Markiewicz, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51, 582–589 (2004)CrossRefGoogle Scholar
  13. 13.
    Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE Trans. Med. Imag. 25, 612–625 (2006)CrossRefGoogle Scholar
  14. 14.
    Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L.G., Chapelle, D., Razavi, R.: Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med. Imag. Anal. 10, 642–656 (2006)CrossRefGoogle Scholar
  15. 15.
    Shahidi, A.V., Savard, P., Nadeau, R.: Forward and inverse problems of electrocardiography: modeling and recovery of epicardial potentials in humans. IEEE Trans. Biomed. Eng. 41, 249–256 (1994)CrossRefGoogle Scholar
  16. 16.
    Smola, A., Scholkopf, B.: A tutorial on support vector regression. Royal Holloway College, Univ. London, NeuroColt Tech. Rep. NV2-TR-1998-030Google Scholar
  17. 17.
    Szilágyi, S.M., Benyó, Z., Dávid, L.: Heart model based ECG signal processing. In: Proc. 5th IFAC Symp. Modell. Contr. Biomed. Syst. pp. 213–217 (2003)Google Scholar
  18. 18.
    Szilágyi, S.M., Benyó, Z., Dávid, L.: WPW syndrome identification and classification using ECG analysis. Proc. World Congr. Med. Phys. Biomed. Eng. 4423.pdf (2003)Google Scholar
  19. 19.
    Szilágyi, S.M.: Event recognition, separation and classification from ECG recordings. In: Proc. 20th Ann. Int. Conf. IEEE EMBS, pp. 236–239 (1998)Google Scholar
  20. 20.
    Thaker, N.V., Ferrero, J.M.: Electrophysiologic models of heart cells and cell networks. IEEE EMBS Mag. 17(5), 73–83 (1998)CrossRefGoogle Scholar
  21. 21.
    Vapnik, V.: Statistical learning theory. Wiley, New York (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sándor M. Szilágyi
    • 1
  • László Szilágyi
    • 1
    • 2
  • Attila Frigy
    • 3
  • Levente K. Görög
    • 1
  • Zoltán Benyó
    • 2
  1. 1.Sapientia - Hungarian Science University of Transylvania, Faculty of Technical and Human Science, Târgu-MureşRomania
  2. 2.Budapest University of Technology and Economics, Dept. of Control Engineering and Information Technology, BudapestHungary
  3. 3.County Medical Clinic No. 4, Târgu-MureşRomania

Personalised recommendations