A Semi-supervised Learning Method for Motility Disease Diagnostic

  • Santi Seguí
  • Laura Igual
  • Petia Radeva
  • Carolina Malagelada
  • Fernando Azpiroz
  • Jordi Vitrià
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


This work tackles the problem of learning a robust classification function from a very small sample set when a related but unlabeled data set is provided. To this end we define a new semi-supervised method that is based on a stability criterion. We successfully apply our proposal in the specific case of automatic diagnosis of intestinal motility disease using video capsule endoscopy. An experimental evaluation shows the viability to apply the proposed method in motility disfunction diagnosis.


Feature Extraction Intestinal Motility Diseases Semi-Supervised Learning Suppor Vector Machine Wireless Capsule Video Endoscopy 


  1. 1.
    Chappelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. Unpublished book. MIT Press (to appear)Google Scholar
  2. 2.
    Seeger, M.: Learning with Labeled and Unlabeled Data. Technical report, Edinburgh (2000)Google Scholar
  3. 3.
    Zhu, X.: Semi-Supervised Learning Literature Survey. Technical Report 530, Computer Sciences, University of Wisconsin-Madison (2005),
  4. 4.
    Yarowsky, D.: Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. In: Proceedings of Association for Computational Linguistics (1995)Google Scholar
  5. 5.
    Maeireizo, B., Litman, D., Hwa, R.: Co-training for predicting emotions with spoken dialogue data. In: ACL (2004)Google Scholar
  6. 6.
    Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models, I: 29–36 (2005)Google Scholar
  7. 7.
    Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-Training. In: Proceedings of Computational Learning Theory (1998)Google Scholar
  8. 8.
    Dasgupta, S., Littman, M.L., Mcallester, D.A.: Pac generalization bounds for co-training. In: Dietterich, T.G., Becker, S., Ghahramani, Z., NIPS (eds.) NIPS, pp. 375–382. MIT Press, Cambridge (2001)Google Scholar
  9. 9.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  10. 10.
    Poggio, T., Rifkin, R., Mukherjee, S., Niyogi, P.: General conditions for predictivity in learning theory. Nature 428, 419–422 (2004)CrossRefGoogle Scholar
  11. 11.
    Callan, J.P., Connell, M.E.: Query-based sampling of text databases. Information Systems 19(2), 97–130 (2001)Google Scholar
  12. 12.
    Hansen, M.B.: Small intestinal manometry. Physiological Research 51, 541–556 (2002)Google Scholar
  13. 13.
    Iddan, G., Meron, G., et al.: Wireless capsule endoscopy. Nature 405, 417 (2000)CrossRefGoogle Scholar
  14. 14.
    Rubner, Y.: The earth movers distance as a metric for image retrieval. International Journal of Computer Vision 40, 99–121 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Vilarino, F., Spyridonos, P., Pujol, O., Vitria, J., Radeva, P.: Automatic detection of intestinal juices in wireless capsule video endoscopy. ICPR 4, 719–722 (2006)Google Scholar
  16. 16.
    Russ, J.: The Image Processing Handbook. CRC Press (1999)Google Scholar
  17. 17.
    Vilariño, F., Spyridonos, P., Vitrià, J., Azpiroz, F., Radeva, P.: Cascade analysis for intestinal contraction detection. CARS, 9–10 (2006)Google Scholar
  18. 18.
    Quigley, E.M.: Gastric and small intestinal motility in health and disease. Gastroenterology Clinics of North America 25, 113–145 (1996)CrossRefGoogle Scholar
  19. 19.
    Tipping, M.: The relevance vector machine. In: Advances in Neural Information Processing Systems, Morgan Kaufmann, San Francisco (2000)Google Scholar
  20. 20.
    Spyridonos, P., Vilariño, F., Vitrià, J., Radeva, P.: Anisotropic feature extraction from endoluminal images for detection of intestinal contractions. LNCS (2006)Google Scholar
  21. 21.
    Stone, M.: Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society B 36, 111–147 (1974)zbMATHGoogle Scholar
  22. 22.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)zbMATHGoogle Scholar
  23. 23.
    Keerthi, S.S., Lin, C.J.: Asymptotic behaviors of support vector machines with gaussian kernel. Neural Computation 15, 1667–1689 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Santi Seguí
    • 1
  • Laura Igual
    • 1
  • Petia Radeva
    • 1
    • 2
  • Carolina Malagelada
    • 3
  • Fernando Azpiroz
    • 3
  • Jordi Vitrià
    • 1
    • 2
  1. 1.Computer Vision Center, Universitat Autònoma de Barcelona, BellaterraSpain
  2. 2.Computer Science Department, Universitat Autònoma de Barcelona, BellaterraSpain
  3. 3.Hospital de Vall d’Hebron, BarcelonaSpain

Personalised recommendations